zcodel commited on
Commit
c827f23
·
verified ·
1 Parent(s): 6892960

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -2,24 +2,24 @@ import gradio as gr
2
  import pandas as pd
3
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
4
 
5
- # Initialize the Hugging Face pipeline
6
- model_name = "gpt2" # Using GPT-2 to ensure compatibility
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForCausalLM.from_pretrained(model_name)
9
  generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
10
 
11
  def generate_solutions(query):
12
  # Use the language model to generate solutions
13
- response = generator(query, max_length=100, num_return_sequences=3)
14
 
15
  # Extract the generated texts
16
- solutions = [{"Solution": r['generated_text']} for r in response]
17
 
18
  # Convert solutions to a DataFrame
19
  df = pd.DataFrame(solutions)
20
 
21
- # Convert DataFrame to HTML table
22
- table_html = df.to_html(escape=False, index=False)
23
 
24
  return table_html
25
 
@@ -29,7 +29,7 @@ iface = gr.Interface(
29
  inputs=gr.Textbox(lines=2, placeholder="Describe the problem with the machine..."),
30
  outputs=gr.HTML(),
31
  title="Oroz: Your Industry Maintenance Assistant",
32
- description="Describe the problem with your machine, and get an organized table of suggested solutions."
33
  )
34
 
35
  iface.launch(share=True)
 
2
  import pandas as pd
3
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
4
 
5
+ # Initialize the Hugging Face pipeline with GPT-4 model
6
+ model_name = "EleutherAI/gpt-neo-2.7B" # Change to your desired GPT-4 model
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForCausalLM.from_pretrained(model_name)
9
  generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
10
 
11
  def generate_solutions(query):
12
  # Use the language model to generate solutions
13
+ responses = generator(query, max_length=100, num_return_sequences=3)
14
 
15
  # Extract the generated texts
16
+ solutions = [{"Solution": response['generated_text'].strip(), "Link": "https://example.com"} for response in responses]
17
 
18
  # Convert solutions to a DataFrame
19
  df = pd.DataFrame(solutions)
20
 
21
+ # Convert DataFrame to HTML table with clickable links
22
+ table_html = df.to_html(escape=False, index=False, render_links=True)
23
 
24
  return table_html
25
 
 
29
  inputs=gr.Textbox(lines=2, placeholder="Describe the problem with the machine..."),
30
  outputs=gr.HTML(),
31
  title="Oroz: Your Industry Maintenance Assistant",
32
+ description="Describe the problem with your machine, and get an organized table of suggested solutions with web links."
33
  )
34
 
35
  iface.launch(share=True)