import gradio as gr from huggingface_hub import InferenceClient from datasets import load_dataset import pandas as pd df = None def load_new_dataset(): global df gr.Info(message="Loading dataset...") # https://huggingface.co/datasets/fka/awesome-chatgpt-prompts ds = pd.read_csv("hf://datasets/fka/awesome-chatgpt-prompts/prompts.csv") df = pd.DataFrame(ds) def run_query(input: str): try: df_results = df[df['act'].str.contains(input, case=False, na=False)] logging_message = f"Results for '{input}' found." except Exception as e: raise gr.Error(f"Error running query: {e}") return df_results, logging_message #---------------------- with gr.Blocks() as demo: text_input = gr.Textbox(visible=True, label="Enter value to generate a prompt for an 'actor' (for instance, developer):") btn_run = gr.Button(visible=True, value="Search") results_output = gr.Dataframe(label="Results", visible=True, wrap=True) logging_output = gr.Label(visible="True", value="") btn_run.click( fn=run_query, # Call the run_query function and update the label inputs=text_input, outputs=[results_output, logging_output] # Update both the DataFrame and the label ) #---------------------- if __name__ == "__main__": load_new_dataset() demo.launch()