|
import streamlit as st |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain_community.embeddings import SentenceTransformerEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
|
|
|
|
knowledge_base = [ |
|
"Gemma 是 Google 开发的大型语言模型。", |
|
"Gemma 具有强大的自然语言处理能力。", |
|
"Gemma 可以用于问答、对话、文本生成等任务。", |
|
"Gemma 基于 Transformer 架构。", |
|
"Gemma 支持多种语言。" |
|
] |
|
|
|
|
|
try: |
|
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2") |
|
db = FAISS.from_texts(knowledge_base, embeddings) |
|
except Exception as e: |
|
st.error(f"向量数据库构建失败:{e}") |
|
st.stop() |
|
|
|
|
|
def answer_question(repo_id, temperature, max_length, question): |
|
|
|
try: |
|
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": temperature, "max_length": max_length}) |
|
except Exception as e: |
|
st.error(f"Gemma 模型加载失败:{e}") |
|
st.stop() |
|
|
|
|
|
try: |
|
question_embedding = embeddings.embed_query(question) |
|
question_embedding_str = " ".join(map(str, question_embedding)) |
|
|
|
docs_and_scores = db.similarity_search_with_score(question_embedding_str) |
|
|
|
context = "\n".join([doc.page_content for doc, _ in docs_and_scores]) |
|
print('context: ' + context) |
|
|
|
prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}" |
|
print('prompt: ' + prompt) |
|
|
|
answer = llm.invoke(prompt) |
|
return answer |
|
except Exception as e: |
|
st.error(f"问答过程出错:{e}") |
|
return "An error occurred during the answering process." |
|
|
|
|
|
st.title("Gemma 知识库问答系统") |
|
|
|
gemma = st.selectbox("repo-id", ("google/gemma-2-9b-it", "google/gemma-2-2b-it", "google/recurrentgemma-2b-it"), 2) |
|
temperature = st.number_input("temperature", value=1.0) |
|
max_length = st.number_input("max_length", value=1024) |
|
question = st.text_area("请输入问题", "Gemma 有哪些特点?") |
|
|
|
if st.button("提交"): |
|
if not question: |
|
st.warning("请输入问题!") |
|
else: |
|
with st.spinner("正在查询..."): |
|
answer = answer_question(gemma, float(temperature), int(max_length), question) |
|
st.write("答案:") |
|
st.write(answer) |