zeerd commited on
Commit
a49ad35
·
verified ·
1 Parent(s): 5b5abf5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import streamlit as st
2
- from langchain_community.llms import HuggingFaceHub
3
  from langchain_community.embeddings import SentenceTransformerEmbeddings
4
  from langchain_community.vectorstores import FAISS
5
 
@@ -24,7 +24,7 @@ except Exception as e:
24
  def answer_question(gemma, temperature, max_length, question):
25
  # 4. 初始化 Gemma 模型
26
  try:
27
- llm = HuggingFaceHub(repo_id=gemma, model_kwargs={"temperature": temperature, "max_length": max_length})
28
  except Exception as e:
29
  st.error(f"Gemma 模型加载失败:{e}")
30
  st.stop()
@@ -33,7 +33,7 @@ def answer_question(gemma, temperature, max_length, question):
33
  try:
34
  question_embedding = embeddings.embed_query(question)
35
  question_embedding_str = " ".join(map(str, question_embedding))
36
- print('question_embedding: ' + question_embedding_str)
37
  docs_and_scores = db.similarity_search_with_score(question_embedding_str)
38
 
39
  context = "\n".join([doc.page_content for doc, _ in docs_and_scores])
@@ -48,12 +48,12 @@ def answer_question(gemma, temperature, max_length, question):
48
  st.error(f"问答过程出错:{e}")
49
  return "An error occurred during the answering process."
50
 
51
- # 5. Streamlit 界面
52
  st.title("Gemma 知识库问答系统")
53
 
54
- gemma = st.selectbox("模型", ("google/gemma-2-9b-it", "google/gemma-2-2b-it", "google/recurrentgemma-2b-it"), 2)
55
- temperature = st.text_input("temperature", "1.0")
56
- max_length = st.text_input("max_length", "1024")
57
  question = st.text_area("请输入问题", "Gemma 有哪些特点?")
58
 
59
  if st.button("提交"):
 
1
  import streamlit as st
2
+ from langchain_huggingface import HuggingFaceEndpoint
3
  from langchain_community.embeddings import SentenceTransformerEmbeddings
4
  from langchain_community.vectorstores import FAISS
5
 
 
24
  def answer_question(gemma, temperature, max_length, question):
25
  # 4. 初始化 Gemma 模型
26
  try:
27
+ llm = HuggingFaceEndpoint(repo_id=gemma, model_kwargs={"temperature": temperature, "max_length": max_length})
28
  except Exception as e:
29
  st.error(f"Gemma 模型加载失败:{e}")
30
  st.stop()
 
33
  try:
34
  question_embedding = embeddings.embed_query(question)
35
  question_embedding_str = " ".join(map(str, question_embedding))
36
+ # print('question_embedding: ' + question_embedding_str)
37
  docs_and_scores = db.similarity_search_with_score(question_embedding_str)
38
 
39
  context = "\n".join([doc.page_content for doc, _ in docs_and_scores])
 
48
  st.error(f"问答过程出错:{e}")
49
  return "An error occurred during the answering process."
50
 
51
+ # 6. Streamlit 界面
52
  st.title("Gemma 知识库问答系统")
53
 
54
+ gemma = st.selectbox("repo-id", ("google/gemma-2-9b-it", "google/gemma-2-2b-it", "google/recurrentgemma-2b-it"), 2)
55
+ temperature = st.number_input("temperature", value=1.0)
56
+ max_length = st.number_input("max_length", value=1024)
57
  question = st.text_area("请输入问题", "Gemma 有哪些特点?")
58
 
59
  if st.button("提交"):