import gradio as gr from transformers import AutoProcessor, SeamlessM4Tv2Model import torch # 加载模型和处理器 processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") def greet(text,src_lang,tgt_lang): # 输入文本 text_inputs = processor(text=text, src_lang=src_lang, return_tensors="pt") # 生成翻译的文本 output_tokens = model.generate(**text_inputs, tgt_lang=tgt_lang, generate_speech=False) translated_text_from_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True) return translated_text_from_text text = gr.Textbox(lines=5,label="输入文本",placeholder="请输入文本") src_lang = gr.Dropdown(label="源语言",choices=["en","zh"]) tgt_lang = gr.Dropdown(label="目标语言",choices=["en","zh"]) output_text = gr.Textbox(lines=5,label="翻译文本",placeholder="翻译文本") demo=gr.Interface(fn=greet, inputs=[text,src_lang,tgt_lang], outputs=output_text) demo.launch()