Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the model and tokenizer from Hugging Face Model Hub | |
tokenizer = AutoTokenizer.from_pretrained("zeyadusf/FlanT5Summarization-samsum") | |
model = AutoModelForSeq2SeqLM.from_pretrained("zeyadusf/FlanT5Summarization-samsum") | |
def summarize(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True) | |
summary_ids = model.generate(inputs.input_ids, max_length=512, min_length=64, length_penalty=2.0, num_beams=4, early_stopping=True) | |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# Define the Gradio interface | |
iface = gr.Interface(fn=summarize, inputs="text", outputs="text", title="Summarization with PEFT") | |
iface.launch() | |