import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model and tokenizer def load_model(): model_name = "zeyadusf/text2pandas-T5" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) return model, tokenizer model, tokenizer = load_model() # Define the function to generate text def generate_text(question, context, max_length=512, num_beams=4, early_stopping=True): input_text = f" {question} {context}" inputs = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(model.device) with torch.no_grad(): outputs = model.generate(inputs, max_length=max_length, num_beams=num_beams, early_stopping=early_stopping) predicted_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return predicted_text # Gradio interface def gradio_interface(question, context, max_length, num_beams, early_stopping): return generate_text(question, context, max_length, num_beams, early_stopping) # Gradio UI Components question_input = gr.Textbox(label="Enter the Question", value="what is the total amount of players for the rockets in 1998 only?") context_input = gr.Textbox(label="Enter the Context", value="df = pd.DataFrame(columns=['player', 'years_for_rockets'])") max_length_input = gr.Slider(minimum=50, maximum=1024, value=512, label="Max Length") num_beams_input = gr.Slider(minimum=1, maximum=10, value=4, label="Number of Beams") early_stopping_input = gr.Checkbox(value=True, label="Early Stopping") # Custom CSS to style the slider, checkbox, and center the button custom_css = """ /* Make the slider handle and bar light green */ input[type="range"] { accent-color: lightgreen; } input[type="range"]::-webkit-slider-thumb { background-color: #90EE90; /* Light green slider thumb */ } input[type="range"]::-webkit-slider-runnable-track { background-color: #32CD32; /* Light green slider track */ } /* Make the checkbox light green */ input[type="checkbox"] { accent-color: lightgreen; } /* Center the button */ .gr-button.gr-button-primary { display: block; margin: 0 auto; background-color: #90EE90; /* Light green button */ color: black; border-radius: 8px; border: 2px solid #006400; /* Dark green border */ } """ # Create Gradio Interface gr.Interface( fn=gradio_interface, inputs=[question_input, context_input, max_length_input, num_beams_input, early_stopping_input], outputs="text", title="Text to Pandas Code Generator", description="Generate Pandas code by providing a question and a context.", css=custom_css, # Apply the custom CSS ).launch()