import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model and tokenizer def load_model(): model_name = "zeyadusf/text2pandas-T5" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) return model, tokenizer model, tokenizer = load_model() # Define the function to generate text def generate_text(question, context, max_length=512, num_beams=4, early_stopping=True): input_text = f" {question} {context}" inputs = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(model.device) with torch.no_grad(): outputs = model.generate(inputs, max_length=max_length, num_beams=num_beams, early_stopping=early_stopping) predicted_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return predicted_text # Gradio interface def gradio_interface(question, context, max_length, num_beams, early_stopping): return generate_text(question, context, max_length, num_beams, early_stopping) # Gradio UI Components question_input = gr.Textbox(label="Enter the Question", value="what is the total amount of players for the rockets in 1998 only?") context_input = gr.Textbox(label="Enter the Context", value="df = pd.DataFrame(columns=['player', 'years_for_rockets'])") max_length_input = gr.Slider(minimum=50, maximum=1024, value=512, label="Max Length", step=1) # Step=1 makes it integer only num_beams_input = gr.Slider(minimum=1, maximum=10, value=4, label="Number of Beams", step=1) # Step=1 makes it integer only early_stopping_input = gr.Checkbox(value=True, label="Early Stopping") # Create Gradio Interface gr.Interface( fn=gradio_interface, inputs=[question_input, context_input, max_length_input, num_beams_input, early_stopping_input], outputs="text", title="Text to Pandas Code Generator", description="Generate Pandas code by providing a question and a context." ).launch()