# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Modified from https://github.com/facebookresearch/PoseDiffusion # and https://github.com/facebookresearch/co-tracker/tree/main import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Tuple, Union from einops import rearrange, repeat from pytorch3d.renderer import HarmonicEmbedding # from pytorch3d.transforms.rotation_conversions import matrix_to_quaternion, quaternion_to_matrix EPS = 1e-9 from pytorch3d.transforms.rotation_conversions import matrix_to_quaternion, quaternion_to_matrix # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe from typing import Optional def pose_encoding_to_camera( pose_encoding, pose_encoding_type="vgg", log_focal_length_bias=1., min_focal_length=0.1, max_focal_length=30, return_dict=False, ): """ Args: pose_encoding: A tensor of shape `BxNxC`, containing a batch of `BxN` `C`-dimensional pose encodings. pose_encoding_type: The type of pose encoding, """ pose_encoding_reshaped = pose_encoding#.reshape(-1, pose_encoding.shape[-1]) # Reshape to BNxC if pose_encoding_type == "train": # 3 for absT, 4 for quaR, 2 for absFL abs_T = pose_encoding_reshaped[..., :3] quaternion_R = pose_encoding_reshaped[..., 3:7] R = quaternion_to_matrix(quaternion_R) log_focal_length = pose_encoding_reshaped[..., 7:9] # log_focal_length_bias was the hyperparameter # to ensure the mean of logFL close to 0 during training # Now converted back m = nn.Softplus() log_focal_length = m(log_focal_length) # clamp to avoid weird fl values focal_length = torch.clamp(log_focal_length, min=min_focal_length, max=max_focal_length) elif pose_encoding_type == "train_fusion": # 3 for absT, 4 for quaR, 2 for absF abs_T = pose_encoding_reshaped[:, :3] quaternion_R = pose_encoding_reshaped[:, 3:7] R = quaternion_to_matrix(quaternion_R) scale = pose_encoding_reshaped[:, 7:8] # log_focal_length_bias was the hyperparameter # to ensure the mean of logFL close to 0 during training # Now converted back focal_length = softplus(scale) # clamp to avoid weird fl values # focal_length = torch.clamp(focal_length, min=min_focal_length, max=max_focal_length) elif pose_encoding_type == "absT_quaR_logFL": # 3 for absT, 4 for quaR, 2 for absFL abs_T = pose_encoding_reshaped[:, :3] quaternion_R = pose_encoding_reshaped[:, 3:7] R = quaternion_to_matrix(quaternion_R) log_focal_length = pose_encoding_reshaped[:, 7:9] # log_focal_length_bias was the hyperparameter # to ensure the mean of logFL close to 0 during training # Now converted back focal_length = (log_focal_length + log_focal_length_bias).exp() # clamp to avoid weird fl values focal_length = torch.clamp(focal_length, min=min_focal_length, max=max_focal_length) elif pose_encoding_type == "absT_quaR_OneFL": # 3 for absT, 4 for quaR, 1 for absFL # [absolute translation, quaternion rotation, normalized focal length] abs_T = pose_encoding_reshaped[:, :3] quaternion_R = pose_encoding_reshaped[:, 3:7] R = quaternion_to_matrix(quaternion_R) focal_length = pose_encoding_reshaped[:, 7:8] focal_length = torch.clamp(focal_length, min=min_focal_length, max=max_focal_length) else: raise ValueError(f"Unknown pose encoding {pose_encoding_type}") # if return_dict: return {"focal_length": focal_length, "R": R, "T": abs_T, "quaternion_R": quaternion_R} # pred_cameras = PerspectiveCameras(focal_length=focal_length, R=R, T=abs_T, device=R.device) # return pred_cameras def camera_to_pose_encoding( camera, pose_encoding_type="absT_quaR_logFL", log_focal_length_bias=1.8, min_focal_length=0.1, max_focal_length=30 ): """ Inverse to pose_encoding_to_camera """ if pose_encoding_type == "absT_quaR_logFL": # Convert rotation matrix to quaternion quaternion_R = matrix_to_quaternion(camera.R) # Calculate log_focal_length log_focal_length = ( torch.log(torch.clamp(camera.focal_length, min=min_focal_length, max=max_focal_length)) - log_focal_length_bias ) # Concatenate to form pose_encoding pose_encoding = torch.cat([camera.T, quaternion_R, log_focal_length], dim=-1) elif pose_encoding_type == "absT_quaR_OneFL": # [absolute translation, quaternion rotation, normalized focal length] quaternion_R = matrix_to_quaternion(camera.R) focal_length = (torch.clamp(camera.focal_length, min=min_focal_length, max=max_focal_length))[..., 0:1] pose_encoding = torch.cat([camera.T, quaternion_R, focal_length], dim=-1) else: raise ValueError(f"Unknown pose encoding {pose_encoding_type}") return pose_encoding class PoseEmbedding(nn.Module): def __init__(self, target_dim, n_harmonic_functions=10, append_input=True): super().__init__() self._emb_pose = HarmonicEmbedding(n_harmonic_functions=n_harmonic_functions, append_input=append_input) self.out_dim = self._emb_pose.get_output_dim(target_dim) def forward(self, pose_encoding): e_pose_encoding = self._emb_pose(pose_encoding) return e_pose_encoding def get_2d_sincos_pos_embed(embed_dim: int, pos_encoding, return_grid=False) -> torch.Tensor: """ This function initializes a grid and generates a 2D positional embedding using sine and cosine functions. It is a wrapper of get_2d_sincos_pos_embed_from_grid. Args: - embed_dim: The embedding dimension. - grid_size: The grid size. Returns: - pos_embed: The generated 2D positional embedding. """ # if isinstance(grid_size, tuple): # grid_size_h, grid_size_w = grid_size # else: # grid_size_h = grid_size_w = grid_size # grid_h = torch.arange(grid_size_h, dtype=torch.float) # grid_w = torch.arange(grid_size_w, dtype=torch.float) # grid = torch.meshgrid(grid_w, grid_h, indexing="xy") grid = pos_encoding # grid.reshape([..., 2]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) return pos_embed.reshape(pos_encoding.shape[0], pos_encoding.shape[1], -1) def get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid: torch.Tensor) -> torch.Tensor: """ This function generates a 2D positional embedding from a given grid using sine and cosine functions. Args: - embed_dim: The embedding dimension. - grid: The grid to generate the embedding from. Returns: - emb: The generated 2D positional embedding. """ assert embed_dim % 2 == 0 emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[..., 0].detach().cpu()) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[..., 1].detach().cpu()) # (H*W, D/2) emb = torch.cat([emb_h, emb_w], dim=2) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor) -> torch.Tensor: """ This function generates a 1D positional embedding from a given grid using sine and cosine functions. Args: - embed_dim: The embedding dimension. - pos: The position to generate the embedding from. Returns: - emb: The generated 1D positional embedding. """ assert embed_dim % 2 == 0 omega = torch.arange(embed_dim // 2, dtype=torch.double) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = torch.sin(out) # (M, D/2) emb_cos = torch.cos(out) # (M, D/2) emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) return emb[None].float() def get_2d_embedding(xy: torch.Tensor, C: int, cat_coords: bool = True) -> torch.Tensor: """ This function generates a 2D positional embedding from given coordinates using sine and cosine functions. Args: - xy: The coordinates to generate the embedding from. - C: The size of the embedding. - cat_coords: A flag to indicate whether to concatenate the original coordinates to the embedding. Returns: - pe: The generated 2D positional embedding. """ B, N, D = xy.shape assert D == 2 x = xy[:, :, 0:1] y = xy[:, :, 1:2] div_term = (torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C)).reshape(1, 1, int(C / 2)) pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) pe_x[:, :, 0::2] = torch.sin(x * div_term) pe_x[:, :, 1::2] = torch.cos(x * div_term) pe_y[:, :, 0::2] = torch.sin(y * div_term) pe_y[:, :, 1::2] = torch.cos(y * div_term) pe = torch.cat([pe_x, pe_y], dim=2) # (B, N, C*3) if cat_coords: pe = torch.cat([xy, pe], dim=2) # (B, N, C*3+3) return pe def bilinear_sampler(input, coords, align_corners=True, padding_mode="border"): r"""Sample a tensor using bilinear interpolation `bilinear_sampler(input, coords)` samples a tensor :attr:`input` at coordinates :attr:`coords` using bilinear interpolation. It is the same as `torch.nn.functional.grid_sample()` but with a different coordinate convention. The input tensor is assumed to be of shape :math:`(B, C, H, W)`, where :math:`B` is the batch size, :math:`C` is the number of channels, :math:`H` is the height of the image, and :math:`W` is the width of the image. The tensor :attr:`coords` of shape :math:`(B, H_o, W_o, 2)` is interpreted as an array of 2D point coordinates :math:`(x_i,y_i)`. Alternatively, the input tensor can be of size :math:`(B, C, T, H, W)`, in which case sample points are triplets :math:`(t_i,x_i,y_i)`. Note that in this case the order of the components is slightly different from `grid_sample()`, which would expect :math:`(x_i,y_i,t_i)`. If `align_corners` is `True`, the coordinate :math:`x` is assumed to be in the range :math:`[0,W-1]`, with 0 corresponding to the center of the left-most image pixel :math:`W-1` to the center of the right-most pixel. If `align_corners` is `False`, the coordinate :math:`x` is assumed to be in the range :math:`[0,W]`, with 0 corresponding to the left edge of the left-most pixel :math:`W` to the right edge of the right-most pixel. Similar conventions apply to the :math:`y` for the range :math:`[0,H-1]` and :math:`[0,H]` and to :math:`t` for the range :math:`[0,T-1]` and :math:`[0,T]`. Args: input (Tensor): batch of input images. coords (Tensor): batch of coordinates. align_corners (bool, optional): Coordinate convention. Defaults to `True`. padding_mode (str, optional): Padding mode. Defaults to `"border"`. Returns: Tensor: sampled points. """ sizes = input.shape[2:] assert len(sizes) in [2, 3] if len(sizes) == 3: # t x y -> x y t to match dimensions T H W in grid_sample coords = coords[..., [1, 2, 0]] if align_corners: coords = coords * torch.tensor([2 / max(size - 1, 1) for size in reversed(sizes)], device=coords.device) else: coords = coords * torch.tensor([2 / size for size in reversed(sizes)], device=coords.device) coords -= 1 return F.grid_sample(input, coords, align_corners=align_corners, padding_mode=padding_mode) def sample_features4d(input, coords): r"""Sample spatial features `sample_features4d(input, coords)` samples the spatial features :attr:`input` represented by a 4D tensor :math:`(B, C, H, W)`. The field is sampled at coordinates :attr:`coords` using bilinear interpolation. :attr:`coords` is assumed to be of shape :math:`(B, R, 3)`, where each sample has the format :math:`(x_i, y_i)`. This uses the same convention as :func:`bilinear_sampler` with `align_corners=True`. The output tensor has one feature per point, and has shape :math:`(B, R, C)`. Args: input (Tensor): spatial features. coords (Tensor): points. Returns: Tensor: sampled features. """ B, _, _, _ = input.shape # B R 2 -> B R 1 2 coords = coords.unsqueeze(2) # B C R 1 feats = bilinear_sampler(input, coords) return feats.permute(0, 2, 1, 3).view(B, -1, feats.shape[1] * feats.shape[3]) # B C R 1 -> B R C