Spaces:
Runtime error
Runtime error
File size: 13,339 Bytes
476ac07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import List, Optional
import torch
from mmengine.utils.misc import get_object_from_string
from peft import PeftType
from torch import nn
from transformers import PreTrainedModel
from xtuner.utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX
def set_obj_dtype(d):
for key, value in d.items():
if value in ['torch.float16', 'torch.float32', 'torch.bfloat16']:
d[key] = getattr(torch, value.split('.')[-1])
def try_build_module(cfg):
builder = cfg['type']
if isinstance(builder, str):
builder = get_object_from_string(builder)
if builder is None:
# support handling cfg with key 'type' can not be built, such as
# {'rope_scaling': {'type': 'linear', 'factor': 2.0}}
return cfg
cfg.pop('type')
module_built = builder(**cfg)
return module_built
def traverse_dict(d):
if isinstance(d, dict):
set_obj_dtype(d)
for key, value in d.items():
if isinstance(value, dict):
traverse_dict(value)
if 'type' in value:
module_built = try_build_module(value)
d[key] = module_built
elif isinstance(d, list):
for element in d:
traverse_dict(element)
def find_all_linear_names(model):
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
if 'output_layer' in lora_module_names: # needed for 16-bit
lora_module_names.remove('output_layer')
return list(lora_module_names)
class LoadWoInit:
"""Context manager that disable parameter initialization."""
def __init__(self):
self.constant_ = torch.nn.init.constant_
self.zeros_ = torch.nn.init.zeros_
self.ones_ = torch.nn.init.ones_
self.uniform_ = torch.nn.init.uniform_
self.normal_ = torch.nn.init.normal_
self.kaiming_uniform_ = torch.nn.init.kaiming_uniform_
self.kaiming_normal_ = torch.nn.init.kaiming_normal_
def __enter__(self, *args, **kwargs):
torch.nn.init.constant_ = lambda *args, **kwargs: None
torch.nn.init.zeros_ = lambda *args, **kwargs: None
torch.nn.init.ones_ = lambda *args, **kwargs: None
torch.nn.init.uniform_ = lambda *args, **kwargs: None
torch.nn.init.normal_ = lambda *args, **kwargs: None
torch.nn.init.kaiming_uniform_ = lambda *args, **kwargs: None
torch.nn.init.kaiming_normal_ = lambda *args, **kwargs: None
def __exit__(self, *args, **kwargs):
torch.nn.init.constant_ = self.constant_
torch.nn.init.zeros_ = self.zeros_
torch.nn.init.ones_ = self.ones_
torch.nn.init.uniform_ = self.uniform_
torch.nn.init.normal_ = self.normal_
torch.nn.init.kaiming_uniform_ = self.kaiming_uniform_
torch.nn.init.kaiming_normal_ = self.kaiming_normal_
def get_peft_model_state_dict(model, state_dict=None, adapter_name='default'):
# Modified from `https://github.com/huggingface/peft/blob/main/src/peft/utils/save_and_load.py` # noqa: E501
config = model.peft_config[adapter_name]
if state_dict is None:
state_dict = model.state_dict()
if config.peft_type == PeftType.LORA:
# adapted from `https://github.com/microsoft/LoRA/blob/main/loralib/utils.py` # noqa: E501
# to be used directly with the state dict which is necessary
# when using DeepSpeed or FSDP
bias = config.bias
if bias == 'none':
to_return = {k: state_dict[k] for k in state_dict if 'lora_' in k}
elif bias == 'all':
to_return = {
k: state_dict[k]
for k in state_dict if 'lora_' in k or 'bias' in k
}
elif bias == 'lora_only':
to_return = {}
for k in state_dict:
if 'lora_' in k:
to_return[k] = state_dict[k]
bias_name = k.split('lora_')[0] + 'bias'
if bias_name in state_dict:
to_return[bias_name] = state_dict[bias_name]
else:
raise NotImplementedError
to_return = {
k: v
for k, v in to_return.items()
if (('lora_' in k and adapter_name in k) or ('bias' in k))
}
else:
# Currently we only support lora
raise NotImplementedError
if model.modules_to_save is not None:
for key, value in state_dict.items():
if any(f'{module_name}.modules_to_save.{adapter_name}' in key
for module_name in model.modules_to_save):
to_return[key] = value
return to_return
# Modified from https://github.com/haotian-liu/LLaVA/blob/82fc5e0e5f4393a4c26851fa32c69ab37ea3b146/llava/model/llava_arch.py#L99 # noqa: E501
def prepare_inputs_labels_for_multimodal(
llm: PreTrainedModel,
input_ids: torch.LongTensor = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None):
if pixel_values is None:
return {
'input_ids': input_ids,
'position_ids': position_ids,
'attention_mask': attention_mask,
'past_key_values': past_key_values,
'inputs_embeds': None,
'labels': labels
}
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_inputs_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_pixel_values = pixel_values[cur_image_idx]
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
cur_inputs_embeds = torch.cat(
[cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0)
new_inputs_embeds.append(cur_inputs_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(
cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [
cur_input_ids.shape[0]
]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] +
1:image_token_indices[i +
1]])
cur_labels_noim.append(cur_labels[image_token_indices[i] +
1:image_token_indices[i + 1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_inputs_embeds = llm.get_input_embeddings()(
torch.cat(cur_input_ids_noim))
cur_inputs_embeds_no_im = torch.split(
cur_inputs_embeds, split_sizes, dim=0)
cur_new_inputs_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_pixel_values = pixel_values[cur_image_idx]
cur_image_idx += 1
cur_new_inputs_embeds.append(cur_pixel_values)
cur_new_labels.append(
torch.full((cur_pixel_values.shape[0], ),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype))
cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_inputs_embeds.append(cur_new_inputs_embeds)
new_labels.append(cur_new_labels)
# Combine them
max_len = max(x.shape[0] for x in new_inputs_embeds)
batch_size = len(new_inputs_embeds)
new_inputs_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len),
dtype=position_ids.dtype,
device=position_ids.device)
for i, (cur_new_embed,
cur_new_labels) in enumerate(zip(new_inputs_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
new_inputs_embeds_padded.append(
torch.cat((cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device)),
dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0,
cur_len,
dtype=position_ids.dtype,
device=position_ids.device)
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return {
'input_ids': None,
'position_ids': position_ids,
'attention_mask': attention_mask,
'past_key_values': past_key_values,
'inputs_embeds': new_inputs_embeds,
'labels': new_labels
}
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
# def guess_load_checkpoint(pth_model):
# if osp.isfile(pth_model):
# state_dict = torch.load(pth_model, map_location='cpu')
# if 'state_dict' in state_dict:
# state_dict = state_dict['state_dict']
# elif osp.isdir(pth_model):
# try:
# from xtuner.utils.zero_to_any_dtype import \
# get_state_dict_from_zero_checkpoint
# except ImportError:
# raise ImportError(
# 'The provided PTH model appears to be a DeepSpeed checkpoint. '
# 'However, DeepSpeed library is not detected in current '
# 'environment. This suggests that DeepSpeed may not be '
# 'installed or is incorrectly configured. Please verify your '
# 'setup.')
# state_dict = get_state_dict_from_zero_checkpoint(
# osp.dirname(pth_model), osp.basename(pth_model))
# else:
# raise FileNotFoundError(f'Cannot find {pth_model}')
# return state_dict
def guess_load_checkpoint(pth_model):
if osp.isfile(pth_model):
state_dict = torch.load(pth_model, map_location='cpu')
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
elif osp.isdir(pth_model):
try:
from deepspeed.utils.zero_to_fp32 import \
get_fp32_state_dict_from_zero_checkpoint
except ImportError:
raise ImportError(
'The provided PTH model appears to be a DeepSpeed checkpoint. '
'However, DeepSpeed library is not detected in current '
'environment. This suggests that DeepSpeed may not be '
'installed or is incorrectly configured. Please verify your '
'setup.')
state_dict = get_fp32_state_dict_from_zero_checkpoint(
osp.dirname(pth_model), osp.basename(pth_model))
else:
raise FileNotFoundError(f'Cannot find {pth_model}')
return state_dict
|