File size: 13,339 Bytes
476ac07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import List, Optional

import torch
from mmengine.utils.misc import get_object_from_string
from peft import PeftType
from torch import nn
from transformers import PreTrainedModel

from xtuner.utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX


def set_obj_dtype(d):
    for key, value in d.items():
        if value in ['torch.float16', 'torch.float32', 'torch.bfloat16']:
            d[key] = getattr(torch, value.split('.')[-1])


def try_build_module(cfg):
    builder = cfg['type']
    if isinstance(builder, str):
        builder = get_object_from_string(builder)
    if builder is None:
        # support handling cfg with key 'type' can not be built, such as
        # {'rope_scaling': {'type': 'linear', 'factor': 2.0}}
        return cfg
    cfg.pop('type')
    module_built = builder(**cfg)
    return module_built


def traverse_dict(d):
    if isinstance(d, dict):
        set_obj_dtype(d)
        for key, value in d.items():
            if isinstance(value, dict):
                traverse_dict(value)
                if 'type' in value:
                    module_built = try_build_module(value)
                    d[key] = module_built
    elif isinstance(d, list):
        for element in d:
            traverse_dict(element)


def find_all_linear_names(model):
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, nn.Linear):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if 'lm_head' in lora_module_names:  # needed for 16-bit
        lora_module_names.remove('lm_head')
    if 'output_layer' in lora_module_names:  # needed for 16-bit
        lora_module_names.remove('output_layer')
    return list(lora_module_names)


class LoadWoInit:
    """Context manager that disable parameter initialization."""

    def __init__(self):
        self.constant_ = torch.nn.init.constant_
        self.zeros_ = torch.nn.init.zeros_
        self.ones_ = torch.nn.init.ones_
        self.uniform_ = torch.nn.init.uniform_
        self.normal_ = torch.nn.init.normal_
        self.kaiming_uniform_ = torch.nn.init.kaiming_uniform_
        self.kaiming_normal_ = torch.nn.init.kaiming_normal_

    def __enter__(self, *args, **kwargs):
        torch.nn.init.constant_ = lambda *args, **kwargs: None
        torch.nn.init.zeros_ = lambda *args, **kwargs: None
        torch.nn.init.ones_ = lambda *args, **kwargs: None
        torch.nn.init.uniform_ = lambda *args, **kwargs: None
        torch.nn.init.normal_ = lambda *args, **kwargs: None
        torch.nn.init.kaiming_uniform_ = lambda *args, **kwargs: None
        torch.nn.init.kaiming_normal_ = lambda *args, **kwargs: None

    def __exit__(self, *args, **kwargs):
        torch.nn.init.constant_ = self.constant_
        torch.nn.init.zeros_ = self.zeros_
        torch.nn.init.ones_ = self.ones_
        torch.nn.init.uniform_ = self.uniform_
        torch.nn.init.normal_ = self.normal_
        torch.nn.init.kaiming_uniform_ = self.kaiming_uniform_
        torch.nn.init.kaiming_normal_ = self.kaiming_normal_


def get_peft_model_state_dict(model, state_dict=None, adapter_name='default'):
    # Modified from `https://github.com/huggingface/peft/blob/main/src/peft/utils/save_and_load.py`  # noqa: E501

    config = model.peft_config[adapter_name]
    if state_dict is None:
        state_dict = model.state_dict()
    if config.peft_type == PeftType.LORA:
        # adapted from `https://github.com/microsoft/LoRA/blob/main/loralib/utils.py`  # noqa: E501
        # to be used directly with the state dict which is necessary
        # when using DeepSpeed or FSDP
        bias = config.bias
        if bias == 'none':
            to_return = {k: state_dict[k] for k in state_dict if 'lora_' in k}
        elif bias == 'all':
            to_return = {
                k: state_dict[k]
                for k in state_dict if 'lora_' in k or 'bias' in k
            }
        elif bias == 'lora_only':
            to_return = {}
            for k in state_dict:
                if 'lora_' in k:
                    to_return[k] = state_dict[k]
                    bias_name = k.split('lora_')[0] + 'bias'
                    if bias_name in state_dict:
                        to_return[bias_name] = state_dict[bias_name]
        else:
            raise NotImplementedError
        to_return = {
            k: v
            for k, v in to_return.items()
            if (('lora_' in k and adapter_name in k) or ('bias' in k))
        }
    else:
        # Currently we only support lora
        raise NotImplementedError
    if model.modules_to_save is not None:
        for key, value in state_dict.items():
            if any(f'{module_name}.modules_to_save.{adapter_name}' in key
                   for module_name in model.modules_to_save):
                to_return[key] = value

    return to_return


# Modified from https://github.com/haotian-liu/LLaVA/blob/82fc5e0e5f4393a4c26851fa32c69ab37ea3b146/llava/model/llava_arch.py#L99  # noqa: E501
def prepare_inputs_labels_for_multimodal(
        llm: PreTrainedModel,
        input_ids: torch.LongTensor = None,
        position_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None):
    if pixel_values is None:
        return {
            'input_ids': input_ids,
            'position_ids': position_ids,
            'attention_mask': attention_mask,
            'past_key_values': past_key_values,
            'inputs_embeds': None,
            'labels': labels
        }

    _labels = labels
    _position_ids = position_ids
    _attention_mask = attention_mask
    if attention_mask is None:
        attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
    else:
        attention_mask = attention_mask.bool()
    if position_ids is None:
        position_ids = torch.arange(
            0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
    if labels is None:
        labels = torch.full_like(input_ids, IGNORE_INDEX)

    # remove the padding using attention_mask -- TODO: double check
    input_ids = [
        cur_input_ids[cur_attention_mask]
        for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
    ]
    labels = [
        cur_labels[cur_attention_mask]
        for cur_labels, cur_attention_mask in zip(labels, attention_mask)
    ]

    new_inputs_embeds = []
    new_labels = []
    cur_image_idx = 0
    for batch_idx, cur_input_ids in enumerate(input_ids):
        num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
        if num_images == 0:
            cur_pixel_values = pixel_values[cur_image_idx]
            cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
            cur_inputs_embeds = torch.cat(
                [cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0)
            new_inputs_embeds.append(cur_inputs_embeds)
            new_labels.append(labels[batch_idx])
            cur_image_idx += 1
            continue

        image_token_indices = [-1] + torch.where(
            cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [
                cur_input_ids.shape[0]
            ]
        cur_input_ids_noim = []
        cur_labels = labels[batch_idx]
        cur_labels_noim = []
        for i in range(len(image_token_indices) - 1):
            cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] +
                                                    1:image_token_indices[i +
                                                                          1]])
            cur_labels_noim.append(cur_labels[image_token_indices[i] +
                                              1:image_token_indices[i + 1]])
        split_sizes = [x.shape[0] for x in cur_labels_noim]
        cur_inputs_embeds = llm.get_input_embeddings()(
            torch.cat(cur_input_ids_noim))
        cur_inputs_embeds_no_im = torch.split(
            cur_inputs_embeds, split_sizes, dim=0)
        cur_new_inputs_embeds = []
        cur_new_labels = []

        for i in range(num_images + 1):
            cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i])
            cur_new_labels.append(cur_labels_noim[i])
            if i < num_images:
                cur_pixel_values = pixel_values[cur_image_idx]
                cur_image_idx += 1
                cur_new_inputs_embeds.append(cur_pixel_values)
                cur_new_labels.append(
                    torch.full((cur_pixel_values.shape[0], ),
                               IGNORE_INDEX,
                               device=cur_labels.device,
                               dtype=cur_labels.dtype))

        cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds)
        cur_new_labels = torch.cat(cur_new_labels)

        new_inputs_embeds.append(cur_new_inputs_embeds)
        new_labels.append(cur_new_labels)

    # Combine them
    max_len = max(x.shape[0] for x in new_inputs_embeds)
    batch_size = len(new_inputs_embeds)

    new_inputs_embeds_padded = []
    new_labels_padded = torch.full((batch_size, max_len),
                                   IGNORE_INDEX,
                                   dtype=new_labels[0].dtype,
                                   device=new_labels[0].device)
    attention_mask = torch.zeros((batch_size, max_len),
                                 dtype=attention_mask.dtype,
                                 device=attention_mask.device)
    position_ids = torch.zeros((batch_size, max_len),
                               dtype=position_ids.dtype,
                               device=position_ids.device)

    for i, (cur_new_embed,
            cur_new_labels) in enumerate(zip(new_inputs_embeds, new_labels)):
        cur_len = cur_new_embed.shape[0]
        new_inputs_embeds_padded.append(
            torch.cat((cur_new_embed,
                       torch.zeros((max_len - cur_len, cur_new_embed.shape[1]),
                                   dtype=cur_new_embed.dtype,
                                   device=cur_new_embed.device)),
                      dim=0))
        if cur_len > 0:
            new_labels_padded[i, :cur_len] = cur_new_labels
            attention_mask[i, :cur_len] = True
            position_ids[i, :cur_len] = torch.arange(
                0,
                cur_len,
                dtype=position_ids.dtype,
                device=position_ids.device)

    new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)

    if _labels is None:
        new_labels = None
    else:
        new_labels = new_labels_padded

    if _attention_mask is None:
        attention_mask = None
    else:
        attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

    if _position_ids is None:
        position_ids = None

    return {
        'input_ids': None,
        'position_ids': position_ids,
        'attention_mask': attention_mask,
        'past_key_values': past_key_values,
        'inputs_embeds': new_inputs_embeds,
        'labels': new_labels
    }


def make_inputs_require_grad(module, input, output):
    output.requires_grad_(True)


# def guess_load_checkpoint(pth_model):
#     if osp.isfile(pth_model):
#         state_dict = torch.load(pth_model, map_location='cpu')
#         if 'state_dict' in state_dict:
#             state_dict = state_dict['state_dict']
#     elif osp.isdir(pth_model):
#         try:
#             from xtuner.utils.zero_to_any_dtype import \
#                 get_state_dict_from_zero_checkpoint
#         except ImportError:
#             raise ImportError(
#                 'The provided PTH model appears to be a DeepSpeed checkpoint. '
#                 'However, DeepSpeed library is not detected in current '
#                 'environment. This suggests that DeepSpeed may not be '
#                 'installed or is incorrectly configured. Please verify your '
#                 'setup.')
#         state_dict = get_state_dict_from_zero_checkpoint(
#             osp.dirname(pth_model), osp.basename(pth_model))
#     else:
#         raise FileNotFoundError(f'Cannot find {pth_model}')
#     return state_dict

def guess_load_checkpoint(pth_model):
    if osp.isfile(pth_model):
        state_dict = torch.load(pth_model, map_location='cpu')
        if 'state_dict' in state_dict:
            state_dict = state_dict['state_dict']
    elif osp.isdir(pth_model):
        try:
            from deepspeed.utils.zero_to_fp32 import \
                get_fp32_state_dict_from_zero_checkpoint
        except ImportError:
            raise ImportError(
                'The provided PTH model appears to be a DeepSpeed checkpoint. '
                'However, DeepSpeed library is not detected in current '
                'environment. This suggests that DeepSpeed may not be '
                'installed or is incorrectly configured. Please verify your '
                'setup.')
        state_dict = get_fp32_state_dict_from_zero_checkpoint(
            osp.dirname(pth_model), osp.basename(pth_model))
    else:
        raise FileNotFoundError(f'Cannot find {pth_model}')
    return state_dict