zixianma commited on
Commit
52bdf5b
·
1 Parent(s): 7afebbb

added custom plot component

Browse files
Files changed (3) hide show
  1. app.py +9 -8
  2. plot.py +153 -0
  3. plot.pyi +239 -0
app.py CHANGED
@@ -5,6 +5,7 @@ import pickle
5
  from prefixspan import PrefixSpan
6
  import gradio as gr
7
  import altair as alt
 
8
  alt.data_transformers.enable("vegafusion")
9
  # from dynabench.task_evaluator import *
10
 
@@ -1024,7 +1025,7 @@ def hide_fpm_and_dist_components(domain, partition, category):
1024
  btn_pattern = gr.Button(value="Find patterns among tasks", visible=False)
1025
 
1026
  table = gr.DataFrame({}, height=250, visible=False)
1027
- dist_chart = gr.Plot(visible=False)
1028
 
1029
  col_name = gr.Dropdown([], value=None, label="by task metadata", visible=False)
1030
  btn_dist = gr.Button(value="Visualize task distribution", visible=False)
@@ -1041,7 +1042,7 @@ def hide_fpm_and_dist_components(domain, partition, category):
1041
  btn_pattern = gr.Button(value="Find patterns among tasks", interactive=True, visible=True)
1042
 
1043
  table = gr.DataFrame({}, height=250, interactive=True, visible=True)
1044
- dist_chart = gr.Plot(visible=True)
1045
 
1046
  btn_dist = gr.Button(value="Visualize task distribution", interactive=True, visible=True)
1047
  return [num_patterns, btn_pattern, table, col_name, btn_dist, dist_chart]
@@ -1089,7 +1090,7 @@ with demo:
1089
  category = gr.Dropdown([], value=None, label="task metadata")
1090
  partition.change(fn=update_category, inputs=[domain, partition], outputs=category)
1091
  with gr.Row():
1092
- output = gr.Plot()
1093
  with gr.Row():
1094
  btn = gr.Button(value="Plot")
1095
  btn.click(plot_task_distribution, [domain, partition, category], output)
@@ -1110,7 +1111,7 @@ with demo:
1110
  category1.change(fn=update_category2, inputs=[domain, partition, category1], outputs=category2)
1111
  domain.change(fn=update_partition_and_models, inputs=domain, outputs=[partition, models])
1112
  with gr.Row():
1113
- output = gr.Plot()
1114
  with gr.Row():
1115
  btn = gr.Button(value="Plot")
1116
  btn.click(plot_all, [domain, partition, models, category1, category2, aggregate], output)
@@ -1130,7 +1131,7 @@ with demo:
1130
  partition2.change(fn=update_category, inputs=[domain2, partition2], outputs=category2)
1131
 
1132
  with gr.Row():
1133
- output2 = gr.Plot()
1134
  with gr.Row():
1135
  btn = gr.Button(value="Run")
1136
  btn.click(plot_embedding, [domain2, partition2, category2], output2)
@@ -1201,7 +1202,7 @@ with demo:
1201
  btn.click(select_tasks, [domain, partition, category, query_type, aggregate, model, model_aggregate, rank, k, direction, threshold, baseline, baseline_aggregate], df)
1202
 
1203
  with gr.Row():
1204
- plot = gr.Plot()
1205
  with gr.Row():
1206
  col_name2 = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
1207
  partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name2)
@@ -1209,7 +1210,7 @@ with demo:
1209
  btn_plot.click(plot_performance_for_selected_tasks, [domain, partition, df, query_type, model, baseline, category, col_name2, aggregate, model_aggregate, baseline_aggregate, rank, direction, threshold], plot)
1210
 
1211
  with gr.Row():
1212
- dist_chart = gr.Plot()
1213
  with gr.Row():
1214
  col_name = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
1215
  partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name)
@@ -1241,7 +1242,7 @@ with demo:
1241
  domain3.change(fn=update_partition_and_models, inputs=domain3, outputs=[partition3, model3])
1242
  # partition3.change(fn=update_k, inputs=[domain3, partition3], outputs=k3)
1243
  with gr.Row():
1244
- output3 = gr.Plot()
1245
  with gr.Row():
1246
  btn = gr.Button(value="Plot")
1247
  btn.click(plot_surprisingness, [domain3, partition3, model3, rank3, k3, num_neighbors], output3)
 
5
  from prefixspan import PrefixSpan
6
  import gradio as gr
7
  import altair as alt
8
+ from plot import Plot
9
  alt.data_transformers.enable("vegafusion")
10
  # from dynabench.task_evaluator import *
11
 
 
1025
  btn_pattern = gr.Button(value="Find patterns among tasks", visible=False)
1026
 
1027
  table = gr.DataFrame({}, height=250, visible=False)
1028
+ dist_chart = Plot(visible=False)
1029
 
1030
  col_name = gr.Dropdown([], value=None, label="by task metadata", visible=False)
1031
  btn_dist = gr.Button(value="Visualize task distribution", visible=False)
 
1042
  btn_pattern = gr.Button(value="Find patterns among tasks", interactive=True, visible=True)
1043
 
1044
  table = gr.DataFrame({}, height=250, interactive=True, visible=True)
1045
+ dist_chart = Plot(visible=True)
1046
 
1047
  btn_dist = gr.Button(value="Visualize task distribution", interactive=True, visible=True)
1048
  return [num_patterns, btn_pattern, table, col_name, btn_dist, dist_chart]
 
1090
  category = gr.Dropdown([], value=None, label="task metadata")
1091
  partition.change(fn=update_category, inputs=[domain, partition], outputs=category)
1092
  with gr.Row():
1093
+ output = Plot()
1094
  with gr.Row():
1095
  btn = gr.Button(value="Plot")
1096
  btn.click(plot_task_distribution, [domain, partition, category], output)
 
1111
  category1.change(fn=update_category2, inputs=[domain, partition, category1], outputs=category2)
1112
  domain.change(fn=update_partition_and_models, inputs=domain, outputs=[partition, models])
1113
  with gr.Row():
1114
+ output = Plot()
1115
  with gr.Row():
1116
  btn = gr.Button(value="Plot")
1117
  btn.click(plot_all, [domain, partition, models, category1, category2, aggregate], output)
 
1131
  partition2.change(fn=update_category, inputs=[domain2, partition2], outputs=category2)
1132
 
1133
  with gr.Row():
1134
+ output2 = Plot()
1135
  with gr.Row():
1136
  btn = gr.Button(value="Run")
1137
  btn.click(plot_embedding, [domain2, partition2, category2], output2)
 
1202
  btn.click(select_tasks, [domain, partition, category, query_type, aggregate, model, model_aggregate, rank, k, direction, threshold, baseline, baseline_aggregate], df)
1203
 
1204
  with gr.Row():
1205
+ plot = Plot()
1206
  with gr.Row():
1207
  col_name2 = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
1208
  partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name2)
 
1210
  btn_plot.click(plot_performance_for_selected_tasks, [domain, partition, df, query_type, model, baseline, category, col_name2, aggregate, model_aggregate, baseline_aggregate, rank, direction, threshold], plot)
1211
 
1212
  with gr.Row():
1213
+ dist_chart = Plot()
1214
  with gr.Row():
1215
  col_name = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
1216
  partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name)
 
1242
  domain3.change(fn=update_partition_and_models, inputs=domain3, outputs=[partition3, model3])
1243
  # partition3.change(fn=update_k, inputs=[domain3, partition3], outputs=k3)
1244
  with gr.Row():
1245
+ output3 = Plot()
1246
  with gr.Row():
1247
  btn = gr.Button(value="Plot")
1248
  btn.click(plot_surprisingness, [domain3, partition3, model3, rank3, k3, num_neighbors], output3)
plot.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """gr.Plot() component."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import json
6
+ from types import ModuleType
7
+ from typing import Any, Literal
8
+
9
+ import altair as alt
10
+ from gradio_client.documentation import document
11
+
12
+ from gradio import processing_utils
13
+ from gradio.components.base import Component
14
+ from gradio.data_classes import GradioModel
15
+ from gradio.events import Events
16
+
17
+
18
+ class PlotData(GradioModel):
19
+ type: Literal["altair", "bokeh", "plotly", "matplotlib"]
20
+ plot: str
21
+
22
+
23
+ class AltairPlotData(PlotData):
24
+ chart: Literal["bar", "line", "scatter"]
25
+ type: Literal["altair"] = "altair"
26
+
27
+
28
+ @document()
29
+ class Plot(Component):
30
+ """
31
+ Creates a plot component to display various kinds of plots (matplotlib, plotly, altair, or bokeh plots are supported). As this component does
32
+ not accept user input, it is rarely used as an input component.
33
+
34
+ Demos: altair_plot, outbreak_forecast, blocks_kinematics, stock_forecast, map_airbnb
35
+ Guides: plot-component-for-maps
36
+ """
37
+
38
+ data_model = PlotData
39
+ EVENTS = [Events.change, Events.clear]
40
+
41
+ def __init__(
42
+ self,
43
+ value: Any | None = None,
44
+ *,
45
+ format: str = "png",
46
+ label: str | None = None,
47
+ every: float | None = None,
48
+ show_label: bool | None = None,
49
+ container: bool = True,
50
+ scale: int | None = None,
51
+ min_width: int = 160,
52
+ visible: bool = True,
53
+ elem_id: str | None = None,
54
+ elem_classes: list[str] | str | None = None,
55
+ render: bool = True,
56
+ ):
57
+ """
58
+ Parameters:
59
+ value: Optionally, supply a default plot object to display, must be a matplotlib, plotly, altair, or bokeh figure, or a callable. If callable, the function will be called whenever the app loads to set the initial value of the component.
60
+ format: File format in which to send matplotlib plots to the front end, such as 'jpg' or 'png'.
61
+ label: The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
62
+ every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
63
+ show_label: if True, will display label.
64
+ container: If True, will place the component in a container - providing some extra padding around the border.
65
+ scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
66
+ min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
67
+ visible: If False, component will be hidden.
68
+ elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
69
+ elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
70
+ render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
71
+ """
72
+ self.format = format
73
+ super().__init__(
74
+ label=label,
75
+ every=every,
76
+ show_label=show_label,
77
+ container=container,
78
+ scale=scale,
79
+ min_width=min_width,
80
+ visible=visible,
81
+ elem_id=elem_id,
82
+ elem_classes=elem_classes,
83
+ render=render,
84
+ value=value,
85
+ )
86
+
87
+ def get_config(self):
88
+ try:
89
+ import bokeh # type: ignore
90
+
91
+ bokeh_version = bokeh.__version__
92
+ except ImportError:
93
+ bokeh_version = None
94
+
95
+ config = super().get_config()
96
+ config["bokeh_version"] = bokeh_version
97
+ return config
98
+
99
+ def preprocess(self, payload: PlotData | None) -> PlotData | None:
100
+ """
101
+ Parameters:
102
+ payload: The data to display in the plot.
103
+ Returns:
104
+ (Rarely used) passes the data displayed in the plot as an PlotData dataclass, which includes the plot information as a JSON string, as well as the type of chart and the plotting library.
105
+ """
106
+ return payload
107
+
108
+ def example_payload(self) -> Any:
109
+ return None
110
+
111
+ def example_value(self) -> Any:
112
+ return None
113
+
114
+ def postprocess(self, value: Any) -> PlotData | None:
115
+ """
116
+ Parameters:
117
+ value: Expects plot data in one of these formats: a matplotlib.Figure, bokeh.Model, plotly.Figure, or altair.Chart object.
118
+ Returns:
119
+ PlotData: A dataclass containing the plot data as a JSON string, as well as the type of chart and the plotting library.
120
+ """
121
+ import matplotlib.figure
122
+
123
+ if value is None:
124
+ return None
125
+ if isinstance(value, (ModuleType, matplotlib.figure.Figure)): # type: ignore
126
+ dtype = "matplotlib"
127
+ out_y = processing_utils.encode_plot_to_base64(value, self.format)
128
+ elif "bokeh" in value.__module__:
129
+ dtype = "bokeh"
130
+ from bokeh.embed import json_item # type: ignore
131
+
132
+ out_y = json.dumps(json_item(value))
133
+ else:
134
+ is_altair = "altair" in value.__module__
135
+ dtype = "altair" if is_altair else "plotly"
136
+ out_y = value.to_json(format="vega")
137
+ return PlotData(type=dtype, plot=out_y)
138
+
139
+
140
+ class AltairPlot:
141
+ @staticmethod
142
+ def create_legend(position, title):
143
+ if position == "none":
144
+ legend = None
145
+ else:
146
+ position = {"orient": position} if position else {}
147
+ legend = {"title": title, **position}
148
+
149
+ return legend
150
+
151
+ @staticmethod
152
+ def create_scale(limit):
153
+ return alt.Scale(domain=limit) if limit else alt.Undefined
plot.pyi ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """gr.Plot() component."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import json
6
+ from types import ModuleType
7
+ from typing import Any, Literal
8
+
9
+ import altair as alt
10
+ from gradio_client.documentation import document
11
+
12
+ from gradio import processing_utils
13
+ from gradio.components.base import Component
14
+ from gradio.data_classes import GradioModel
15
+ from gradio.events import Events
16
+
17
+
18
+ class PlotData(GradioModel):
19
+ type: Literal["altair", "bokeh", "plotly", "matplotlib"]
20
+ plot: str
21
+
22
+
23
+ class AltairPlotData(PlotData):
24
+ chart: Literal["bar", "line", "scatter"]
25
+ type: Literal["altair"] = "altair"
26
+
27
+ from gradio.events import Dependency
28
+
29
+ @document()
30
+ class Plot(Component):
31
+ """
32
+ Creates a plot component to display various kinds of plots (matplotlib, plotly, altair, or bokeh plots are supported). As this component does
33
+ not accept user input, it is rarely used as an input component.
34
+
35
+ Demos: altair_plot, outbreak_forecast, blocks_kinematics, stock_forecast, map_airbnb
36
+ Guides: plot-component-for-maps
37
+ """
38
+
39
+ data_model = PlotData
40
+ EVENTS = [Events.change, Events.clear]
41
+
42
+ def __init__(
43
+ self,
44
+ value: Any | None = None,
45
+ *,
46
+ format: str = "png",
47
+ label: str | None = None,
48
+ every: float | None = None,
49
+ show_label: bool | None = None,
50
+ container: bool = True,
51
+ scale: int | None = None,
52
+ min_width: int = 160,
53
+ visible: bool = True,
54
+ elem_id: str | None = None,
55
+ elem_classes: list[str] | str | None = None,
56
+ render: bool = True,
57
+ ):
58
+ """
59
+ Parameters:
60
+ value: Optionally, supply a default plot object to display, must be a matplotlib, plotly, altair, or bokeh figure, or a callable. If callable, the function will be called whenever the app loads to set the initial value of the component.
61
+ format: File format in which to send matplotlib plots to the front end, such as 'jpg' or 'png'.
62
+ label: The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
63
+ every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
64
+ show_label: if True, will display label.
65
+ container: If True, will place the component in a container - providing some extra padding around the border.
66
+ scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
67
+ min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
68
+ visible: If False, component will be hidden.
69
+ elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
70
+ elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
71
+ render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
72
+ """
73
+ self.format = format
74
+ super().__init__(
75
+ label=label,
76
+ every=every,
77
+ show_label=show_label,
78
+ container=container,
79
+ scale=scale,
80
+ min_width=min_width,
81
+ visible=visible,
82
+ elem_id=elem_id,
83
+ elem_classes=elem_classes,
84
+ render=render,
85
+ value=value,
86
+ )
87
+
88
+ def get_config(self):
89
+ try:
90
+ import bokeh # type: ignore
91
+
92
+ bokeh_version = bokeh.__version__
93
+ except ImportError:
94
+ bokeh_version = None
95
+
96
+ config = super().get_config()
97
+ config["bokeh_version"] = bokeh_version
98
+ return config
99
+
100
+ def preprocess(self, payload: PlotData | None) -> PlotData | None:
101
+ """
102
+ Parameters:
103
+ payload: The data to display in the plot.
104
+ Returns:
105
+ (Rarely used) passes the data displayed in the plot as an PlotData dataclass, which includes the plot information as a JSON string, as well as the type of chart and the plotting library.
106
+ """
107
+ return payload
108
+
109
+ def example_payload(self) -> Any:
110
+ return None
111
+
112
+ def example_value(self) -> Any:
113
+ return None
114
+
115
+ def postprocess(self, value: Any) -> PlotData | None:
116
+ """
117
+ Parameters:
118
+ value: Expects plot data in one of these formats: a matplotlib.Figure, bokeh.Model, plotly.Figure, or altair.Chart object.
119
+ Returns:
120
+ PlotData: A dataclass containing the plot data as a JSON string, as well as the type of chart and the plotting library.
121
+ """
122
+ import matplotlib.figure
123
+
124
+ if value is None:
125
+ return None
126
+ if isinstance(value, (ModuleType, matplotlib.figure.Figure)): # type: ignore
127
+ dtype = "matplotlib"
128
+ out_y = processing_utils.encode_plot_to_base64(value, self.format)
129
+ elif "bokeh" in value.__module__:
130
+ dtype = "bokeh"
131
+ from bokeh.embed import json_item # type: ignore
132
+
133
+ out_y = json.dumps(json_item(value))
134
+ else:
135
+ is_altair = "altair" in value.__module__
136
+ dtype = "altair" if is_altair else "plotly"
137
+ out_y = value.to_json(format="vega")
138
+ return PlotData(type=dtype, plot=out_y)
139
+
140
+
141
+ def change(self,
142
+ fn: Callable | None,
143
+ inputs: Component | Sequence[Component] | set[Component] | None = None,
144
+ outputs: Component | Sequence[Component] | None = None,
145
+ api_name: str | None | Literal[False] = None,
146
+ scroll_to_output: bool = False,
147
+ show_progress: Literal["full", "minimal", "hidden"] = "full",
148
+ queue: bool | None = None,
149
+ batch: bool = False,
150
+ max_batch_size: int = 4,
151
+ preprocess: bool = True,
152
+ postprocess: bool = True,
153
+ cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
154
+ every: float | None = None,
155
+ trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
156
+ js: str | None = None,
157
+ concurrency_limit: int | None | Literal["default"] = "default",
158
+ concurrency_id: str | None = None,
159
+ show_api: bool = True) -> Dependency:
160
+ """
161
+ Parameters:
162
+ fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
163
+ inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
164
+ outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
165
+ api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
166
+ scroll_to_output: If True, will scroll to output component on completion
167
+ show_progress: If True, will show progress animation while pending
168
+ queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
169
+ batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
170
+ max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
171
+ preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
172
+ postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
173
+ cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
174
+ every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds.
175
+ trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
176
+ js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
177
+ concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
178
+ concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
179
+ show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps to use this event. If fn is None, show_api will automatically be set to False.
180
+ """
181
+ ...
182
+
183
+ def clear(self,
184
+ fn: Callable | None,
185
+ inputs: Component | Sequence[Component] | set[Component] | None = None,
186
+ outputs: Component | Sequence[Component] | None = None,
187
+ api_name: str | None | Literal[False] = None,
188
+ scroll_to_output: bool = False,
189
+ show_progress: Literal["full", "minimal", "hidden"] = "full",
190
+ queue: bool | None = None,
191
+ batch: bool = False,
192
+ max_batch_size: int = 4,
193
+ preprocess: bool = True,
194
+ postprocess: bool = True,
195
+ cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
196
+ every: float | None = None,
197
+ trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
198
+ js: str | None = None,
199
+ concurrency_limit: int | None | Literal["default"] = "default",
200
+ concurrency_id: str | None = None,
201
+ show_api: bool = True) -> Dependency:
202
+ """
203
+ Parameters:
204
+ fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
205
+ inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
206
+ outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
207
+ api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
208
+ scroll_to_output: If True, will scroll to output component on completion
209
+ show_progress: If True, will show progress animation while pending
210
+ queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
211
+ batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
212
+ max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
213
+ preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
214
+ postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
215
+ cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
216
+ every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds.
217
+ trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
218
+ js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
219
+ concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
220
+ concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
221
+ show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps to use this event. If fn is None, show_api will automatically be set to False.
222
+ """
223
+ ...
224
+
225
+
226
+ class AltairPlot:
227
+ @staticmethod
228
+ def create_legend(position, title):
229
+ if position == "none":
230
+ legend = None
231
+ else:
232
+ position = {"orient": position} if position else {}
233
+ legend = {"title": title, **position}
234
+
235
+ return legend
236
+
237
+ @staticmethod
238
+ def create_scale(limit):
239
+ return alt.Scale(domain=limit) if limit else alt.Undefined