Spaces:
Running
Running
flow3rdown
commited on
Commit
·
16bab0d
1
Parent(s):
360ca92
test
Browse files- app.py +107 -39
- examples/inland_lake.png +0 -0
- examples/qinghai_lake.png +0 -0
app.py
CHANGED
@@ -1,10 +1,108 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
def blended_inference():
|
7 |
-
pass
|
8 |
|
9 |
TITLE = """MKG Analogy"""
|
10 |
|
@@ -13,43 +111,13 @@ with gr.Blocks() as block:
|
|
13 |
gr.HTML(TITLE)
|
14 |
|
15 |
with gr.Tab("Single Analogical Reasoning"):
|
16 |
-
|
17 |
-
|
18 |
-
""")
|
19 |
-
with gr.Row():
|
20 |
-
with gr.Column():
|
21 |
-
head_image = gr.Image(type='pil', label="Head Image")
|
22 |
-
head_ent = gr.Textbox(lines=1, label="Head Entity")
|
23 |
-
with gr.Column():
|
24 |
-
tail_image = gr.Image(type='pil', label="Tail Image")
|
25 |
-
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
|
26 |
-
with gr.Column():
|
27 |
-
question_text = gr.Textbox(lines=1, label="Question Name")
|
28 |
-
question_ent = gr.Textbox(lines=1, label="Question Entity")
|
29 |
-
submit_btn = gr.Button("Submit")
|
30 |
-
output_text = gr.Textbox(label="Output")
|
31 |
-
|
32 |
-
# examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']]
|
33 |
-
# ex = gr.Examples(
|
34 |
-
# examples=examples,
|
35 |
-
# fn=image_to_prompt,
|
36 |
-
# inputs=[input_image, input_model, input_mode],
|
37 |
-
# outputs=[output_text, share_button, community_icon, loading_icon],
|
38 |
-
# cache_examples=True,
|
39 |
-
# run_on_click=True
|
40 |
-
# )
|
41 |
-
# ex.dataset.headers = [""]
|
42 |
|
43 |
with gr.Tab("Blended Analogical Reasoning"):
|
44 |
-
|
45 |
-
|
46 |
# gr.HTML(ARTICLE)
|
47 |
-
|
48 |
-
# submit_btn.click(
|
49 |
-
# fn=image_to_prompt,
|
50 |
-
# inputs=[input_image, input_model, input_mode],
|
51 |
-
# outputs=[output_text, share_button, community_icon, loading_icon]
|
52 |
-
# )
|
53 |
-
# share_button.click(None, [], [], _js=None)
|
54 |
|
55 |
block.queue(max_size=64).launch(enable_queue=True)
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
def single_inference_iit(head_img, head_id, tail_img, tail_id, question_txt, question_id):
|
4 |
+
return question_txt
|
5 |
+
|
6 |
+
def single_inference_tti(head_txt, head_id, tail_txt, tail_id, question_img, question_id):
|
7 |
+
return head_txt
|
8 |
+
|
9 |
+
def blended_inference_iti(head_img, head_id, tail_txt, tail_id, question_img, question_id):
|
10 |
+
return tail_txt
|
11 |
+
|
12 |
+
def single_tab_iit():
|
13 |
+
with gr.Column():
|
14 |
+
gr.Markdown(""" $(I_h, I_t) : (T_q, ?)$
|
15 |
+
""")
|
16 |
+
with gr.Row():
|
17 |
+
with gr.Column():
|
18 |
+
head_image = gr.Image(type='pil', label="Head Image")
|
19 |
+
head_ent = gr.Textbox(lines=1, label="Head Entity")
|
20 |
+
with gr.Column():
|
21 |
+
tail_image = gr.Image(type='pil', label="Tail Image")
|
22 |
+
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
|
23 |
+
with gr.Column():
|
24 |
+
question_text = gr.Textbox(lines=1, label="Question Name")
|
25 |
+
question_ent = gr.Textbox(lines=1, label="Question Entity")
|
26 |
+
|
27 |
+
submit_btn = gr.Button("Submit")
|
28 |
+
output_text = gr.Textbox(label="Output")
|
29 |
+
|
30 |
+
submit_btn.click(fn=single_inference_iit,
|
31 |
+
inputs=[head_image, head_ent, tail_image, tail_ent, question_text, question_ent],
|
32 |
+
outputs=[output_text])
|
33 |
+
|
34 |
+
examples=[['examples/qinghai_lake.png', 'Q201294', 'examples/inland_lake.png', 'Q31805992', "campaign", 'Q18812548']]
|
35 |
+
ex = gr.Examples(
|
36 |
+
examples=examples,
|
37 |
+
fn=single_inference_iit,
|
38 |
+
inputs=[head_image, head_ent, tail_image, tail_ent, question_text, question_ent],
|
39 |
+
outputs=[output_text],
|
40 |
+
cache_examples=True,
|
41 |
+
run_on_click=True
|
42 |
+
)
|
43 |
+
|
44 |
+
def single_tab_tti():
|
45 |
+
with gr.Column():
|
46 |
+
gr.Markdown(""" $(T_h, T_t) : (I_q, ?)$
|
47 |
+
""")
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column():
|
50 |
+
head_text = gr.Textbox(lines=1, label="Head Name")
|
51 |
+
head_ent = gr.Textbox(lines=1, label="Head Entity")
|
52 |
+
with gr.Column():
|
53 |
+
tail_text = gr.Textbox(lines=1, label="Tail Name")
|
54 |
+
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
|
55 |
+
with gr.Column():
|
56 |
+
question_text = gr.Image(type='pil', label="Question Image")
|
57 |
+
question_ent = gr.Textbox(lines=1, label="Question Entity")
|
58 |
+
submit_btn = gr.Button("Submit")
|
59 |
+
output_text = gr.Textbox(label="Output")
|
60 |
+
|
61 |
+
submit_btn.click(fn=single_inference_iit,
|
62 |
+
inputs=[head_text, head_ent, tail_text, tail_ent, question_text, question_ent],
|
63 |
+
outputs=[output_text])
|
64 |
+
|
65 |
+
examples=[['qinghai_lake', 'Q201294', 'inland_lake', 'Q31805992', 'examples/qinghai_lake.png', 'Q18812548']]
|
66 |
+
ex = gr.Examples(
|
67 |
+
examples=examples,
|
68 |
+
fn=single_inference_iit,
|
69 |
+
inputs=[head_text, head_ent, tail_text, tail_ent, question_text, question_ent],
|
70 |
+
outputs=[output_text],
|
71 |
+
cache_examples=True,
|
72 |
+
run_on_click=True
|
73 |
+
)
|
74 |
+
|
75 |
+
def blended_tab_iti():
|
76 |
+
with gr.Column():
|
77 |
+
gr.Markdown(""" $(I_h, T_t) : (I_q, ?)$
|
78 |
+
""")
|
79 |
+
with gr.Row():
|
80 |
+
with gr.Column():
|
81 |
+
head_image = gr.Image(type='pil', label="Head Image")
|
82 |
+
head_ent = gr.Textbox(lines=1, label="Head Entity")
|
83 |
+
with gr.Column():
|
84 |
+
tail_txt = gr.Textbox(lines=1, label="Tail Name")
|
85 |
+
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
|
86 |
+
with gr.Column():
|
87 |
+
question_image = gr.Image(type='pil', label="Question Image")
|
88 |
+
question_ent = gr.Textbox(lines=1, label="Question Entity")
|
89 |
+
submit_btn = gr.Button("Submit")
|
90 |
+
output_text = gr.Textbox(label="Output")
|
91 |
+
|
92 |
+
submit_btn.click(fn=single_inference_iit,
|
93 |
+
inputs=[head_image, head_ent, tail_txt, tail_ent, question_image, question_ent],
|
94 |
+
outputs=[output_text])
|
95 |
+
|
96 |
+
examples=[['examples/qinghai_lake.png', 'Q201294', 'inland_lake', 'Q31805992', 'examples/inland_lake.png', 'Q18812548']]
|
97 |
+
ex = gr.Examples(
|
98 |
+
examples=examples,
|
99 |
+
fn=single_inference_iit,
|
100 |
+
inputs=[head_image, head_ent, tail_txt, tail_ent, question_image, question_ent],
|
101 |
+
outputs=[output_text],
|
102 |
+
cache_examples=True,
|
103 |
+
run_on_click=True
|
104 |
+
)
|
105 |
|
|
|
|
|
106 |
|
107 |
TITLE = """MKG Analogy"""
|
108 |
|
|
|
111 |
gr.HTML(TITLE)
|
112 |
|
113 |
with gr.Tab("Single Analogical Reasoning"):
|
114 |
+
single_tab_iit()
|
115 |
+
single_tab_tti()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
with gr.Tab("Blended Analogical Reasoning"):
|
118 |
+
blended_tab_iti()
|
119 |
+
|
120 |
# gr.HTML(ARTICLE)
|
121 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
block.queue(max_size=64).launch(enable_queue=True)
|
examples/inland_lake.png
ADDED
examples/qinghai_lake.png
ADDED