Spaces:
Running
Running
flow3rdown
commited on
Commit
·
d02d53b
1
Parent(s):
9aac1ca
fix
Browse files
app.py
CHANGED
@@ -110,38 +110,66 @@ def single_inference_iit(head_img, head_id, tail_img, tail_id, question_txt, que
|
|
110 |
|
111 |
|
112 |
def single_inference_tti(head_txt, head_id, tail_txt, tail_id, question_img, question_id):
|
113 |
-
#
|
114 |
-
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
|
129 |
|
130 |
-
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
|
140 |
return answer
|
141 |
|
142 |
|
143 |
def blended_inference_iti(head_img, head_id, tail_txt, tail_id, question_img, question_id):
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
def single_tab_iit():
|
147 |
with gr.Column():
|
@@ -192,7 +220,7 @@ def single_tab_tti():
|
|
192 |
submit_btn = gr.Button("Submit")
|
193 |
output_text = gr.Textbox(label="Output")
|
194 |
|
195 |
-
submit_btn.click(fn=
|
196 |
inputs=[head_text, head_ent, tail_text, tail_ent, question_image, question_ent],
|
197 |
outputs=[output_text])
|
198 |
|
@@ -223,7 +251,7 @@ def blended_tab_iti():
|
|
223 |
submit_btn = gr.Button("Submit")
|
224 |
output_text = gr.Textbox(label="Output")
|
225 |
|
226 |
-
submit_btn.click(fn=
|
227 |
inputs=[head_image, head_ent, tail_txt, tail_ent, question_image, question_ent],
|
228 |
outputs=[output_text])
|
229 |
|
|
|
110 |
|
111 |
|
112 |
def single_inference_tti(head_txt, head_id, tail_txt, tail_id, question_img, question_id):
|
113 |
+
# (T, T) -> (I, ?)
|
114 |
+
head_ent_text, tail_ent_text = ent2description[head_id], ent2description[tail_id]
|
115 |
|
116 |
+
inputs = tokenizer(
|
117 |
+
tokenizer.sep_token.join([analogy_ent2token[head_id] + " " + head_ent_text, "[R] ", analogy_ent2token[tail_id] + " " + tail_ent_text]),
|
118 |
+
tokenizer.sep_token.join([analogy_ent2token[question_id] + " ", "[R] ", "[MASK]"]),
|
119 |
+
truncation="longest_first", max_length=128, padding="longest", return_tensors='pt', add_special_tokens=True)
|
120 |
+
sep_idx = [[i for i, ids in enumerate(input_ids) if ids == tokenizer.sep_token_id] for input_ids in inputs['input_ids']]
|
121 |
+
inputs['sep_idx'] = torch.tensor(sep_idx)
|
122 |
+
inputs['attention_mask'] = inputs['attention_mask'].unsqueeze(1).expand([inputs['input_ids'].size(0), inputs['input_ids'].size(1), inputs['input_ids'].size(1)]).clone()
|
123 |
+
for i, idx in enumerate(sep_idx):
|
124 |
+
inputs['attention_mask'][i, :idx[2], idx[2]:] = 0
|
125 |
|
126 |
+
# image
|
127 |
+
pixel_values = processor(images=[question_img], return_tensors='pt')['pixel_values'].squeeze()
|
128 |
+
inputs['pixel_values'] = pixel_values.unsqueeze(0)
|
129 |
|
130 |
+
input_ids = inputs['input_ids']
|
131 |
|
132 |
+
model_output = mkgformer.model(**inputs, return_dict=True)
|
133 |
+
logits = model_output[0].logits
|
134 |
+
bsz = input_ids.shape[0]
|
135 |
|
136 |
+
_, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True) # bsz
|
137 |
+
mask_logits = logits[torch.arange(bsz), mask_idx][:, analogy_entity_ids] # bsz, 1, entity
|
138 |
+
answer = ent2text[list(analogy_ent2token.keys())[mask_logits.argmax().item()]]
|
139 |
|
140 |
return answer
|
141 |
|
142 |
|
143 |
def blended_inference_iti(head_img, head_id, tail_txt, tail_id, question_img, question_id):
|
144 |
+
# (I, T) -> (I, ?)
|
145 |
+
head_ent_text, tail_ent_text = ent2description[head_id], ent2description[tail_id]
|
146 |
+
|
147 |
+
inputs = tokenizer(
|
148 |
+
tokenizer.sep_token.join([analogy_ent2token[head_id], "[R] ", analogy_ent2token[tail_id] + " " + tail_ent_text]),
|
149 |
+
tokenizer.sep_token.join([analogy_ent2token[question_id] + " ", "[R] ", "[MASK]"]),
|
150 |
+
truncation="longest_first", max_length=128, padding="longest", return_tensors='pt', add_special_tokens=True)
|
151 |
+
sep_idx = [[i for i, ids in enumerate(input_ids) if ids == tokenizer.sep_token_id] for input_ids in inputs['input_ids']]
|
152 |
+
inputs['sep_idx'] = torch.tensor(sep_idx)
|
153 |
+
inputs['attention_mask'] = inputs['attention_mask'].unsqueeze(1).expand([inputs['input_ids'].size(0), inputs['input_ids'].size(1), inputs['input_ids'].size(1)]).clone()
|
154 |
+
for i, idx in enumerate(sep_idx):
|
155 |
+
inputs['attention_mask'][i, :idx[2], idx[2]:] = 0
|
156 |
+
|
157 |
+
# image
|
158 |
+
pixel_values = processor(images=[head_img, question_img], return_tensors='pt')['pixel_values'].squeeze()
|
159 |
+
inputs['pixel_values'] = pixel_values.unsqueeze(0)
|
160 |
+
|
161 |
+
input_ids = inputs['input_ids']
|
162 |
+
|
163 |
+
model_output = mkgformer.model(**inputs, return_dict=True)
|
164 |
+
logits = model_output[0].logits
|
165 |
+
bsz = input_ids.shape[0]
|
166 |
+
|
167 |
+
_, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True) # bsz
|
168 |
+
mask_logits = logits[torch.arange(bsz), mask_idx][:, analogy_entity_ids] # bsz, 1, entity
|
169 |
+
answer = ent2text[list(analogy_ent2token.keys())[mask_logits.argmax().item()]]
|
170 |
+
|
171 |
+
return answer
|
172 |
+
|
173 |
|
174 |
def single_tab_iit():
|
175 |
with gr.Column():
|
|
|
220 |
submit_btn = gr.Button("Submit")
|
221 |
output_text = gr.Textbox(label="Output")
|
222 |
|
223 |
+
submit_btn.click(fn=single_inference_tti,
|
224 |
inputs=[head_text, head_ent, tail_text, tail_ent, question_image, question_ent],
|
225 |
outputs=[output_text])
|
226 |
|
|
|
251 |
submit_btn = gr.Button("Submit")
|
252 |
output_text = gr.Textbox(label="Output")
|
253 |
|
254 |
+
submit_btn.click(fn=blended_inference_iti,
|
255 |
inputs=[head_image, head_ent, tail_txt, tail_ent, question_image, question_ent],
|
256 |
outputs=[output_text])
|
257 |
|