import streamlit as st import os import json from transformers import GPT2Tokenizer, GPT2LMHeadModel, BertTokenizer, BertModel,T5Tokenizer, T5ForConditionalGeneration,AutoTokenizer, AutoModelForSeq2SeqLM import torch from sklearn.metrics.pairwise import cosine_similarity import numpy as np import nltk from nltk.tokenize import sent_tokenize def is_new_file_upload(uploaded_file): if 'last_uploaded_file' in st.session_state: # Check if the newly uploaded file is different from the last one if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or uploaded_file.size != st.session_state.last_uploaded_file['size']): st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size} # st.write("A new src image file has been uploaded.") return True else: # st.write("The same src image file has been re-uploaded.") return False else: # st.write("This is the first file upload detected.") st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size} return True big_text = """

Knowledge Extraction 1

""" # Display the styled text st.markdown(big_text, unsafe_allow_html=True) uploaded_json_file = st.file_uploader("Upload a pre-processed file", type=['json']) st.markdown( f'Sample 1 download and then upload to above', unsafe_allow_html=True) if uploaded_json_file is not None: if is_new_file_upload(uploaded_json_file): print("is new file uploaded") save_path = './uploaded_files' if not os.path.exists(save_path): os.makedirs(save_path) with open(os.path.join(save_path, uploaded_json_file.name), "wb") as f: f.write(uploaded_json_file.getbuffer()) # Write the file to the specified location st.success(f'Saved file temp_{uploaded_json_file.name} in {save_path}') st.session_state.uploaded_path=os.path.join(save_path, uploaded_json_file.name) # st.session_state.page_count = utils.get_pdf_page_count(st.session_state.uploaded_pdf_path) # print("page_count=",st.session_state.page_count) content = uploaded_json_file.read() try: st.session_state.restored_paragraphs = json.loads(content) #print(data) # Check if the parsed data is a dictionary if isinstance(st.session_state.restored_paragraphs, list): # Count the restored_paragraphs of top-level elements st.session_state.list_count = len(st.session_state.restored_paragraphs) st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }') else: st.write('The JSON content is not a dictionary.') except json.JSONDecodeError: st.write('Invalid JSON file.') st.rerun() if 'is_initialized' not in st.session_state: st.session_state['is_initialized'] = True nltk.download('punkt') st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", ) st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda') if 'list_count' in st.session_state: st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }') if 'paragraph_sentence_encodings' not in st.session_state: print("start embedding paragarphs") read_progress_bar = st.progress(0) st.session_state.paragraph_sentence_encodings = [] for index,paragraph in enumerate(st.session_state.restored_paragraphs): #print(paragraph) progress_percentage = (index) / (st.session_state.list_count - 1) print(progress_percentage) read_progress_bar.progress(progress_percentage) sentence_encodings = [] sentences = sent_tokenize(paragraph['text']) for sentence in sentences: if sentence.strip().endswith('?'): sentence_encodings.append(None) continue if len(sentence.strip()) < 4: sentence_encodings.append(None) continue sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to('cuda') with torch.no_grad(): sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy() sentence_encodings.append([sentence, sentence_encoding]) # sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()]) st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])