File size: 19,630 Bytes
ad5ca2c
d6482c4
 
 
 
15cd602
ad5ca2c
 
 
 
 
 
 
 
 
 
d6482c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15cd602
 
 
 
7d07000
 
15cd602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d07000
15cd602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d07000
15cd602
 
 
7d07000
15cd602
 
7d07000
15cd602
7d07000
 
15cd602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6269e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229ebda
 
 
 
c6269e3
 
 
 
 
229ebda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d07000
 
 
 
 
 
 
 
 
229ebda
 
 
7d07000
229ebda
 
 
7d07000
229ebda
 
 
 
 
 
 
 
 
 
 
 
 
 
d6482c4
 
 
 
 
 
 
6f01943
 
d6482c4
15cd602
 
 
 
 
 
 
 
7d07000
 
 
8dfad76
 
15cd602
8dfad76
15cd602
7d07000
 
8dfad76
 
7d07000
 
8dfad76
 
bfc7f18
c6269e3
 
 
 
7d07000
 
 
 
c6269e3
 
 
 
7d07000
c6269e3
 
229ebda
c6269e3
 
7d07000
c6269e3
 
 
 
bfc7f18
229ebda
 
 
7d07000
229ebda
7d07000
229ebda
 
 
 
 
 
 
 
 
 
 
 
 
c965cb0
229ebda
 
 
 
 
 
 
 
 
 
 
bfc7f18
229ebda
 
 
 
bfc7f18
229ebda
 
 
 
 
bfc7f18
229ebda
b5701e8
229ebda
c965cb0
 
229ebda
7d07000
229ebda
7d07000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import subprocess
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import pytesseract
def get_pdf_page_count(pdf_path):
    try:
        # Running pdfinfo command to get information about the PDF
        result = subprocess.run(['pdfinfo', pdf_path], stdout=subprocess.PIPE, text=True)
        # Parsing the output to find the line with the number of pages
        for line in result.stdout.split('\n'):
            if 'Pages:' in line:
                return int(line.split(':')[1].strip())
    except Exception as e:
        print(f"An error occurred: {e}")
        return None
#configurable extract rectange rectangle size

def extract_rectangle_from_image(gray, min_width, min_height):
    bounding_boxes = []
    #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 50, 150, apertureSize=3)
    #edges = cv2.Canny(gray, 10, 200, apertureSize=3)
    kernel = np.ones((3,3), np.uint8)
    dilated_edges = cv2.dilate(edges, kernel, iterations=1)
    contours, _ = cv2.findContours(dilated_edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)


    index = 0
    for cnt in contours:
        approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True)
        #approx = cv2.approxPolyDP(cnt, 0.1*cv2.arcLength(cnt, True), True)
        if len(approx) == 4:  # Rectangle check
            x, y, w, h = cv2.boundingRect(approx)
            # print(f"x: {x}, y: {y}, w: {w}, h: {h}")
            if w >= min_width and h >= min_height:
                bounding_boxes.append((x, y, w, h))
                #print(x, y, w, h)
    return bounding_boxes
def is_close(box1, box2, threshold=10):
    # Calculate the distance between the top-left corners of the two boxes
    distance = ((box1[0] - box2[0]) ** 2 + (box1[1] - box2[1]) ** 2) ** 0.5
    return distance < threshold
def remove_close_boxes(boxes, threshold=10):
    kept_boxes = []
    for box in boxes:
        # Assume the box is not close to others by default
        is_close_to_others = False
        for kept_box in kept_boxes:
            if is_close(box, kept_box, threshold):
                is_close_to_others = True
                break
        # If the box is not close to any box we've kept, add it to the list of kept boxes
        if not is_close_to_others:
            kept_boxes.append(box)
    return kept_boxes
def is_contained(box1, box2):
    """
    Check if box1 is contained within box2.
    Each box is defined as (x, y, w, h).
    """
    x1, y1, w1, h1 = box1
    x2, y2, w2, h2 = box2

    # Check if all corners of box1 are inside box2
    return x2 <= x1 and y2 <= y1 and x2 + w2 >= x1 + w1 and y2 + h2 >= y1 + h1

def remove_contained_boxes(boxes):
    """
    Remove boxes that are contained within other boxes.
    """
    non_contained_boxes = []

    for i, box1 in enumerate(boxes):
        # Check if there's another box that contains box1
        if not any(is_contained(box1, box2) for j, box2 in enumerate(boxes) if i != j):
            non_contained_boxes.append(box1)

    return non_contained_boxes
def draw_colored_boxes_on_image_np(image, boxes_list,color_tuple):
  for x, y, w, h in boxes_list:
      #x, y, w, h = box[0]
      cv2.rectangle(image, (x, y), (x + w, y + h), color_tuple, thickness=5)

def is_filled_rectangle(image, rect, background_threshold=10, variance_threshold=0.1):

    x, y, w, h = rect
    # roi = image[y+1:y+h-1, x+1:x+w-1]
    roi = image[y + 10:y + h - 10, x + 10:x + w - 10]
    return np.all(roi == 0)
def get_below_box(image_np, x, y,width,step=15):
  #print("x,y,width="+str(x)+","+str(y)+","+str(width))

  index_y = -1
  #print("get_below_box"+str(image_np.shape))
  if y+step < image_np.shape[0]:
    index_y = y
    while index_y+step < image_np.shape[0]:
      #print(str( np.all(image_np[index_y:index_y+step,x:x+width] == 255)))

      # image_np_copy = image_np.copy()
      # bgr_image = cv2.cvtColor(image_np_copy, cv2.COLOR_GRAY2BGR)
      # cv2.rectangle(bgr_image, (x, index_y), (x + width, index_y +step), color_tuple, thickness=5)
      # display_image_np(bgr_image)


      if np.all(image_np[index_y:index_y+step,x:x+width] == 255):
        # index_y += step
        break
      index_y += step
  return index_y
def get_above_box(image_np, x, y,width,step=15):
  #print("x,y,width="+str(x)+","+str(y)+","+str(width))

  index_y = -1
  #print("get_below_box"+str(image_np.shape))
  if y-step > 0:
    index_y = y
    while index_y-step > 0:
      #print(str( np.all(image_np[index_y:index_y+step,x:x+width] == 255)))

      # image_np_copy = image_np.copy()
      # bgr_image = cv2.cvtColor(image_np_copy, cv2.COLOR_GRAY2BGR)
      # color_tuple=(0, 255, 0)
      # cv2.rectangle(bgr_image, (x, index_y-step), (x + width, index_y), color_tuple, thickness=5)
      # display_image_np(bgr_image)


      if np.all(image_np[index_y-step:index_y,x:x+width] == 255):
        # index_y += step
        break
      index_y -= step
  return index_y
def is_note_rectangle(image_np, rect):
  x, y, w, h = rect
  roi = image_np[y+1:y+h-1, x+1:x+w-1]
  roi_converted = Image.fromarray(cv2.cvtColor(roi, cv2.COLOR_BGR2RGB))
  text = pytesseract.image_to_string(roi_converted)
  text = text.strip()
  note_str="note"
  # print("is note text box="+str(text.lower().startswith(note_str.lower())))
  return text.lower().startswith(note_str.lower())
def extract_bounding_boxes_from_image_np(image_np, bounding_boxes_list, above_check_offset, above_caption_offset, color_tuple):

  image_np_copy=image_np.copy()
  rect_content_list=[]
  above_rect_content_list=[]
  figures_image_list=[]
  tables_image_list=[]
  index = 0
  for box in bounding_boxes_list:
    x, y, w, h = box
    if not is_filled_rectangle(image_np_copy, box):
      # print("box="+str(box)+"not filled")
      y_index= get_below_box(image_np, x, y+h,w)
      if y_index == -1 or is_note_rectangle(image_np_copy, box):
        # print("below text not found")
        rect_content =image_np[y:y+h, x:x+w]
        # rect_content_list.append(rect_content)
        cv2.rectangle(image_np_copy, (x, y), (x+w, y+h), color_tuple, cv2.FILLED)
      else:
        # print("below text found")
        rect_content =image_np[y:y_index, x:x+w]
        # rect_content_list.append(rect_content)
        cv2.rectangle(image_np_copy, (x, y), (x+w, y_index), color_tuple, cv2.FILLED)

      cv2.rectangle(image_np_copy, (x, y), (x+w, y+h), color_tuple, cv2.FILLED)

      above_box_y= get_above_box(image_np, x, y,w)
      if above_box_y == -1 or above_box_y == y:
        # print("box="+str(box)+"no above box")
        above_rect_content_list.append(None)
        rect_content_list.append(rect_content)
      else:
        # print("box="+str(box)+"above box exist")
        above_rect_content = image_np[above_box_y:y, x:x+w]
        # above_rect_content_list.append(above_rect_content)
        above_converted = Image.fromarray(cv2.cvtColor(above_rect_content, cv2.COLOR_BGR2RGB))
        text = pytesseract.image_to_string(above_converted)
        text = text.strip()
        figure_str ="Figure"
        table_str ="Table"
        if text.lower().startswith(figure_str.lower()):
          # print(text)
          figures_image_list.append((text,rect_content))

        elif  text.lower().startswith(table_str.lower()):
          # print(text)
          tables_image_list.append((text,rect_content))
        else:
          print("*** text box have above content")
          above_rect_content_list.append((text, rect_content))
          rect_content_list.append(rect_content)


        cv2.rectangle(image_np_copy, (x, above_box_y), (x+w, y), color_tuple, cv2.FILLED)
      # above_rect_content = image_np[y-above_check_offset:y, x:x+w]
      # if np.all(above_rect_content == 255):
      #   # print("box="+str(box)+"above all white")
      #   above_rect_content_list.append(None)
      # else:
      #   # print("box="+str(box)+"above not all white")
      #   above_rect_content = image_np[y-above_caption_offset:y, x:x+w]
      #   above_rect_content_list.append(above_rect_content)
      #   cv2.rectangle(image_np_copy, (x, y), (x+w, y-above_caption_offset), color_tuple, cv2.FILLED)

      index += 1
    # else:
    #   print("box="+str(box)+"filled")
  return rect_content_list,above_rect_content_list,  figures_image_list, tables_image_list, image_np_copy
def find_hor_lines_in_image_np(min_width, min_height,image_np):
  # Apply a horizontal kernel to emphasize horizontal lines
  kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1050, 5))  # Adjust size according to your document
  morphed = cv2.morphologyEx(image_np, cv2.MORPH_CLOSE, kernel)

  # Detect edges
  edges = cv2.Canny(morphed, 50, 150, apertureSize=3)

  # Detect lines using HoughLinesP
  lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)  # Adjust parameters as needed
  return lines
def draw_colored_lines_on_image_np(image, lines,color_tuple):
  for line  in lines:
      x1, y1, x2, y2 = line[0]
      cv2.line(image, (x1, y1), (x2, y2), color_tuple, 3)
def segment_image_np(image_np,hor_lines_list):
  # print("in segment_image_np image_np start")
  # display_image_np(image_np)
  # print("in segment_image_np image_np end")
  segments = []
  previous_y = 0
  for line in sorted(hor_lines_list, key=lambda x: x[0][1]):  # Sort lines by their y-coordinate
      x1, y1, x2, y2 = line[0]
      segment = image_np[previous_y:y1, :]
      segments.append(segment)
      previous_y = y2  # Update to start the next segment from the end of the current line

  # Don't forget the last segment
  last_segment =image_np[previous_y:, :]
  segments.append(last_segment)
  return segments
def filter_segments_by_min_height(segments, min_height):
    return [segment for segment in segments if segment.shape[0] > min_height]

def draw_edges(np_image):
    color = (0, 255, 0)  # Green

    # Define the thickness of the rectangle lines
    thickness = 5

    # Get the dimensions of the image
    try:
        height, width = np_image.shape[:2]
    except Exception as e:
        print("An error occurred:", e)

    # Coordinates for the rectangle: start from (0,0) to (width, height)
    # We draw from 0+thickness//2 and width-thickness//2 to respect the thickness and not go out of bounds
    cv2.rectangle(np_image, (thickness // 2, thickness // 2), (width - thickness // 2, height - thickness // 2), color,
                  thickness)
def is_image_np_two_columns(image_np,horizontal_margin,vertical_margin):
  page_x_center = image_np.shape[1]//2
  page_height=image_np.shape[0]
  image_middle_np =image_np[vertical_margin:(page_height-vertical_margin), page_x_center-horizontal_margin:page_x_center+horizontal_margin]
  #display_image_np(image_middle_np)
  return np.all(image_middle_np == 255)
def extract_two_columns_text(image_index,image_np,debug):
  # formatted_index_string = f"{index:03d}"
  if is_image_np_two_columns(image_np,20,10):
      page_x_center = image_np.shape[1] // 2
      # print(page_x_center)
      temp_array = image_np.copy()
      left_column_array = temp_array[:, :page_x_center]
      temp_array = image_np.copy()
      right_column_array = temp_array[:, page_x_center:]

      left_column_img = Image.fromarray(cv2.cvtColor(left_column_array, cv2.COLOR_BGR2RGB))
      left_column_array_bgr_image = cv2.cvtColor(left_column_array, cv2.COLOR_GRAY2BGR)
      draw_edges(left_column_array_bgr_image)

      # imageio.imwrite("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step8_left_column.png", left_column_img)

      right_column_img = Image.fromarray(cv2.cvtColor(right_column_array, cv2.COLOR_BGR2RGB))
      right_column_array_bgr_image = cv2.cvtColor(right_column_array, cv2.COLOR_GRAY2BGR)
      draw_edges(right_column_array_bgr_image)
      # imageio.imwrite("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step8_right_column.png", right_column_img)
      # if debug:
          # print("left column image start")
          # # display(left_column_img)
          # # st.image(Image.fromarray(left_column_array_bgr_image))  # to_be_displayed
          # print("left column image end")
          # print("right column image start")
          # # display(right_column_img)
          # # st.image(Image.fromarray(right_column_array_bgr_image))  # to_be_displayed
          # print("right column image end")
      left_text = pytesseract.image_to_string(left_column_img)
      # with open("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step9_left_column_text.txt", 'w') as file:
      #   file.write(left_text)
      # print("Extracted Text:\n", left_text)
      right_text = pytesseract.image_to_string(right_column_img)
      # with open("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step9_right_column_text.txt", 'w') as file:
      #   file.write(right_text)
      # print("Extracted Text:\n", right_text)
      return left_text + right_text
  else:
      return "error"
def get_where_image_np_two_columns_stops(image_np,horizontal_margin,vertical_margin):
  page_x_center = image_np.shape[1]//2
  page_height=image_np.shape[0]
  image_middle_np =image_np[vertical_margin:(page_height-vertical_margin), page_x_center-horizontal_margin:page_x_center+horizontal_margin]
  #display_image_np(image_middle_np)
  return np.where(image_middle_np != 255)

  # indices = np.where(image_middle_np != 255)
  # print(len(indices[0]))
  # for i in range(len(indices[0])):
  #     print(f"Index: {indices[0][i], indices[1][i]}, Value: {image_middle_np[indices[0][i], indices[1][i]]}")
def gray_pdf_image_np_to_text(image_index,gray_pdf_image_np, debug=False):
    bounding_boxes_list = extract_rectangle_from_image(gray_pdf_image_np, 500, 20)
    bounding_boxes_list = remove_close_boxes (bounding_boxes_list, 10)
    bounding_boxes_list = remove_contained_boxes(bounding_boxes_list)
    if debug:
        bgr_image = cv2.cvtColor(gray_pdf_image_np, cv2.COLOR_GRAY2BGR)
        color_tuple = (0, 255, 0)
        # print("bounding_boxes_list")
        # print(bounding_boxes_list)
        draw_colored_boxes_on_image_np(bgr_image, bounding_boxes_list, color_tuple)
        # st.image(Image.fromarray(bgr_image)) #to_be_displayed

    text_box_list, above_test_box_list,figures_image_list,tables_image_list, cropped_image = extract_bounding_boxes_from_image_np(gray_pdf_image_np,
                                                                                             bounding_boxes_list, 30,
                                                                                             50, (255, 255, 255))
    if debug:
        debug_text_box_index = 0
        for text_box, above_text_box in zip(text_box_list, above_test_box_list):
            # print("text box start")
            # if above_text_box is not None:
                # print(above_text_box[0])#to_be_displayed
                # st.write(above_text_box[0])#to_be_displayed
                # st.image(Image.fromarray(above_text_box[1]))#to_be_displayed
                # st.write(text)
            # st.image(Image.fromarray(text_box))#to_be_displayed
            debug_text_box_index = debug_text_box_index + 1
        # for figure in figures_image_list:
            # print(figure[0])
            # st.write(figure[0])#to_be_displayed
            # st.image(Image.fromarray(figure[1]))#to_be_displayed
        # for table in tables_image_list:
            # print(table[0])
            # st.write(table[0])#to_be_displayed
            # st.image(Image.fromarray(table[1]))#to_be_displayed
        # st.image(Image.fromarray(cropped_image))#to_be_displayed
    found_hor_lines_list = find_hor_lines_in_image_np(1050, 5, cropped_image)
    if found_hor_lines_list is not None:
        bgr_image = cv2.cvtColor(gray_pdf_image_np, cv2.COLOR_GRAY2BGR)
        draw_colored_lines_on_image_np(bgr_image, found_hor_lines_list, (0, 255, 0))
        # print("detected Lines start")
        # # st.image(Image.fromarray(bgr_image)) #to_be_displayed
        #
        # print("detected lines end")
        page_segment_np_list = segment_image_np(cropped_image, found_hor_lines_list)
        if debug:
            debug_page_segment_index = 0
            for element in page_segment_np_list:
                # print("element start")
                bgr_image = cv2.cvtColor(element, cv2.COLOR_GRAY2BGR)
                draw_edges(bgr_image)
                # st.image(Image.fromarray(bgr_image))#to_be_displayed

                debug_page_segment_index = debug_page_segment_index + 1
                # print("element end")
        min_height_filtered_page_segment_np_list = filter_segments_by_min_height(page_segment_np_list, 50)
        max_height_image = max(min_height_filtered_page_segment_np_list, key=lambda image: image.shape[0])
    else:
        max_height_image = cropped_image.copy()
    # st.write("selected segment")
    # print("max height image start")
    # st.image(Image.fromarray(max_height_image))#to_be_displayed
    # print("max height image end")
    # print("start text extraction")
    text=extract_two_columns_text(image_index,max_height_image,debug)
    # print("gray_pdf_image_np_to_text extracted text",text)
    if text == "error":
        print("not two columns")
        max_height_image_converted = Image.fromarray(cv2.cvtColor(max_height_image, cv2.COLOR_BGR2RGB))
        text = pytesseract.image_to_string(max_height_image_converted)
        text = text.strip()
        toc_str="table of contents"
        # print("Extracted Text:\n", text)
        if text.lower().startswith(toc_str.lower()):

        #if "Table of Contents" in text:
          print("Table of Contents")
          # display_image_np(max_height_image)
          #print(text)
          return None, None, None, "Table of Contents"
        else:
          print("not Table of Contents")
          indeces_stop=get_where_image_np_two_columns_stops(max_height_image,20,10)
          print(indeces_stop[0][0])
          print(max_height_image.shape[0])
          y_start=get_above_box(max_height_image, 0, indeces_stop[0][0],max_height_image.shape[1])
          if debug:
            bgr_image = cv2.cvtColor(max_height_image, cv2.COLOR_GRAY2BGR)
            color_tuple=(0, 255, 0)
            cv2.rectangle(bgr_image, (0, y_start), (max_height_image.shape[1], max_height_image.shape[0]), color_tuple, thickness=5)
            print("still in the middle start")
            # st.image(Image.fromarray(bgr_image))
            print("still in the middle end")
          left_over_content =max_height_image[y_start:max_height_image.shape[0], 0:max_height_image.shape[1]]
          if debug:
            print("left over start")
            # st.image(Image.fromarray(left_over_content))
            print("left over end")
          max_height_image_copy=max_height_image.copy()
          cv2.rectangle(max_height_image_copy, (0, y_start), (max_height_image.shape[1], max_height_image.shape[0]), (255, 255, 255), cv2.FILLED)
          if debug:
            print("no left over start")
            # st.image(Image.fromarray(max_height_image_copy))
            print("no left over end")
          text=extract_two_columns_text(image_index,max_height_image_copy,debug)
          if text == "error":
            return None, None, None, "error"
            # return()
          else:
            return figures_image_list,tables_image_list,text_box_list,text
    else:
        return figures_image_list,tables_image_list,text_box_list,text