Qwen-VL / eval_mm /evaluate_vqa.py
znskiss's picture
Upload folder using huggingface_hub
319f7e3
raw
history blame
13.3 kB
import argparse
import itertools
import json
import os
import random
import time
from functools import partial
from typing import Optional
import torch
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
from vqa import VQA
from vqa_eval import VQAEval
ds_collections = {
'vqav2_val': {
'train': 'data/vqav2/vqav2_train.jsonl',
'test': 'data/vqav2/vqav2_val.jsonl',
'question': 'data/vqav2/v2_OpenEnded_mscoco_val2014_questions.json',
'annotation': 'data/vqav2/v2_mscoco_val2014_annotations.json',
'metric': 'vqa_score',
'max_new_tokens': 10,
},
'okvqa_val': {
'train': 'data/okvqa/okvqa_train.jsonl',
'test': 'data/okvqa/okvqa_val.jsonl',
'question': 'data/okvqa/OpenEnded_mscoco_val2014_questions.json',
'annotation': 'data/okvqa/mscoco_val2014_annotations.json',
'metric': 'vqa_score',
'max_new_tokens': 10,
},
'textvqa_val': {
'train': 'data/textvqa/textvqa_train.jsonl',
'test': 'data/textvqa/textvqa_val.jsonl',
'question': 'data/textvqa/textvqa_val_questions.json',
'annotation': 'data/textvqa/textvqa_val_annotations.json',
'metric': 'vqa_score',
'max_new_tokens': 10,
},
'vizwiz_val': {
'train': 'data/vizwiz/vizwiz_train.jsonl',
'test': 'data/vizwiz/vizwiz_val.jsonl',
'question': 'data/vizwiz/vizwiz_val_questions.json',
'annotation': 'data/vizwiz/vizwiz_val_annotations.json',
'metric': 'vqa_score',
'max_new_tokens': 10,
},
'docvqa': {
'train': 'data/DocVQA/train.jsonl',
'test': 'data/DocVQA/val.jsonl',
# 'question': '',
'annotation': './data/DocVQA/val/val_v1.0.json',
'metric': 'anls',
'max_new_tokens': 100,
},
'infographicsvqa': {
'train': 'data/InfographicsVQA/train.jsonl',
'test': 'data/InfographicsVQA/val.jsonl',
# 'question': '',
'annotation': './data/InfographicsVQA/infographicVQA_val_v1.0.json',
'metric': 'anls',
'max_new_tokens': 100,
},
'chartqa': {
'train': 'data/ChartQA/train.jsonl',
'test': 'data/ChartQA/val_human.jsonl',
# 'question': '',
# 'annotation': '',
'metric': 'relaxed_accuracy',
'max_new_tokens': 100,
},
'gqa': {
'train': 'data/GQA/train.jsonl',
'test': 'data/GQA/testdev_balanced.jsonl',
# 'question': '',
# 'annotation': '',
'metric': 'accuracy',
'max_new_tokens': 10,
},
'ocrvqa': {
'train': 'data/OCR-VQA/train.jsonl',
'test': 'data/OCR-VQA/val.jsonl',
# 'question': '',
# 'annotation': '',
'metric': 'accuracy',
'max_new_tokens': 10,
},
'ai2diagram': {
'train': 'data/AI2Diagram/train.jsonl',
'test': 'data/AI2Diagram/test.jsonl',
# 'question': '',
# 'annotation': '',
'metric': 'accuracy',
'max_new_tokens': 10,
}
}
# https://github.com/google-research/pix2struct/blob/main/pix2struct/metrics.py#L81
def relaxed_correctness(target: str,
prediction: str,
max_relative_change: float = 0.05) -> bool:
"""Calculates relaxed correctness.
The correctness tolerates certain error ratio defined by max_relative_change.
See https://arxiv.org/pdf/2203.10244.pdf, end of section 5.1:
“Following Methani et al. (2020), we use a relaxed accuracy measure for the
numeric answers to allow a minor inaccuracy that may result from the automatic
data extraction process. We consider an answer to be correct if it is within
5% of the gold answer. For non-numeric answers, we still need an exact match
to consider an answer to be correct.”
Args:
target: Target string.
prediction: Predicted string.
max_relative_change: Maximum relative change.
Returns:
Whether the prediction was correct given the specified tolerance.
"""
def _to_float(text: str) -> Optional[float]:
try:
if text.endswith("%"):
# Convert percentages to floats.
return float(text.rstrip("%")) / 100.0
else:
return float(text)
except ValueError:
return None
prediction_float = _to_float(prediction)
target_float = _to_float(target)
if prediction_float is not None and target_float:
relative_change = abs(
prediction_float - target_float) / abs(target_float)
return relative_change <= max_relative_change
else:
return prediction.lower() == target.lower()
def evaluate_relaxed_accuracy(entries):
scores = []
for elem in entries:
score = max([relaxed_correctness(elem['answer'].strip(), ann) for ann in elem['annotation']])
scores.append(score)
return sum(scores) / len(scores)
def evaluate_exact_match_accuracy(entries):
scores = []
for elem in entries:
score = max([(1.0 if (elem['answer'].strip().lower() == ann.strip().lower()) else 0.0) for ann in elem['annotation']])
scores.append(score)
return sum(scores) / len(scores)
def collate_fn(batches, tokenizer):
questions = [_['question'] for _ in batches]
question_ids = [_['question_id'] for _ in batches]
annotations = [_['annotation'] for _ in batches]
input_ids = tokenizer(questions, return_tensors='pt', padding='longest')
return question_ids, input_ids.input_ids, input_ids.attention_mask, annotations
class VQADataset(torch.utils.data.Dataset):
def __init__(self, train, test, prompt, few_shot):
self.test = open(test).readlines()
self.prompt = prompt
self.few_shot = few_shot
if few_shot > 0:
self.train = open(train).readlines()
def __len__(self):
return len(self.test)
def __getitem__(self, idx):
data = json.loads(self.test[idx].strip())
image, question, question_id, annotation = data['image'], data['question'], data[
'question_id'], data['answer']
few_shot_prompt = ''
if self.few_shot > 0:
few_shot_samples = random.sample(self.train, self.few_shot)
for sample in few_shot_samples:
sample = json.loads(sample.strip())
few_shot_prompt += self.prompt.format(
sample['image'],
sample['question']) + f" {sample['answer']}"
return {
'question': few_shot_prompt + self.prompt.format(image, question),
'question_id': question_id,
'annotation': annotation
}
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size,
self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[:rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, default='')
parser.add_argument('--dataset', type=str, default='')
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--few-shot', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(torch.distributed.get_rank())
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint, device_map='cuda', trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint,
trust_remote_code=True)
tokenizer.padding_side = 'left'
tokenizer.pad_token_id = tokenizer.eod_id
prompt = '<img>{}</img>{} Answer:'
random.seed(args.seed)
dataset = VQADataset(
train=ds_collections[args.dataset]['train'],
test=ds_collections[args.dataset]['test'],
prompt=prompt,
few_shot=args.few_shot,
)
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=InferenceSampler(len(dataset)),
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=partial(collate_fn, tokenizer=tokenizer),
)
outputs = []
for _, (question_ids, input_ids,
attention_mask, annotations) in tqdm(enumerate(dataloader)):
pred = model.generate(
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=False,
num_beams=1,
max_new_tokens=ds_collections[args.dataset]['max_new_tokens'],
min_new_tokens=1,
length_penalty=1,
num_return_sequences=1,
output_hidden_states=True,
use_cache=True,
pad_token_id=tokenizer.eod_id,
eos_token_id=tokenizer.eod_id,
)
answers = [
tokenizer.decode(_[input_ids.size(1):].cpu(),
skip_special_tokens=True).strip() for _ in pred
]
for question_id, answer, annotation in zip(question_ids, answers, annotations):
try:
outputs.append({'question_id': int(question_id), 'answer': answer, 'annotation': annotation})
except:
outputs.append({'question_id': question_id, 'answer': answer, 'annotation': annotation})
torch.distributed.barrier()
world_size = torch.distributed.get_world_size()
merged_outputs = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_outputs, outputs)
merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)]
if torch.distributed.get_rank() == 0:
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
results_file = f'{args.dataset}_{time_prefix}_fs{args.few_shot}_s{args.seed}.json'
json.dump(merged_outputs, open(results_file, 'w'),
ensure_ascii=False) # save to results
if ds_collections[args.dataset]['metric'] == 'vqa_score':
vqa = VQA(ds_collections[args.dataset]['annotation'],
ds_collections[args.dataset]['question'])
results = vqa.loadRes(
resFile=results_file,
quesFile=ds_collections[args.dataset]['question'])
vqa_scorer = VQAEval(vqa, results, n=2)
vqa_scorer.evaluate()
print(vqa_scorer.accuracy)
elif ds_collections[args.dataset]['metric'] == 'anls':
merged_outputs = [{'answer': _['answer'], 'questionId': _['question_id']} for _ in merged_outputs]
results_file = f'{args.dataset}_official_{time_prefix}.json'
json.dump(merged_outputs, open(results_file, 'w'), ensure_ascii=False)
print('python infographicsvqa_eval.py -g ' + ds_collections[args.dataset]['annotation'] + ' -s ' + results_file)
os.system('python infographicsvqa_eval.py -g ' + ds_collections[args.dataset]['annotation'] + ' -s ' + results_file)
elif ds_collections[args.dataset]['metric'] == 'relaxed_accuracy':
print({'relaxed_accuracy': evaluate_relaxed_accuracy(merged_outputs)})
elif ds_collections[args.dataset]['metric'] == 'accuracy':
if 'gqa' in args.dataset:
for entry in merged_outputs:
response = entry['answer']
response = response.strip().split('.')[0].split(',')[0].split('!')[0].lower()
if 'is ' in response:
response = response.split('is ')[1]
if 'are ' in response:
response = response.split('are ')[1]
if 'a ' in response:
response = response.split('a ')[1]
if 'an ' in response:
response = response.split('an ')[1]
if 'the ' in response:
response = response.split('the ')[1]
if ' of' in response:
response = response.split(' of')[0]
response = response.strip()
entry['answer'] = response
print({'accuracy': evaluate_exact_match_accuracy(merged_outputs)})
torch.distributed.barrier()