|
import argparse |
|
import itertools |
|
import json |
|
import os |
|
import random |
|
import time |
|
from functools import partial |
|
from typing import Optional |
|
|
|
import torch |
|
from tqdm import tqdm |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from vqa import VQA |
|
from vqa_eval import VQAEval |
|
|
|
ds_collections = { |
|
'vqav2_val': { |
|
'train': 'data/vqav2/vqav2_train.jsonl', |
|
'test': 'data/vqav2/vqav2_val.jsonl', |
|
'question': 'data/vqav2/v2_OpenEnded_mscoco_val2014_questions.json', |
|
'annotation': 'data/vqav2/v2_mscoco_val2014_annotations.json', |
|
'metric': 'vqa_score', |
|
'max_new_tokens': 10, |
|
}, |
|
'okvqa_val': { |
|
'train': 'data/okvqa/okvqa_train.jsonl', |
|
'test': 'data/okvqa/okvqa_val.jsonl', |
|
'question': 'data/okvqa/OpenEnded_mscoco_val2014_questions.json', |
|
'annotation': 'data/okvqa/mscoco_val2014_annotations.json', |
|
'metric': 'vqa_score', |
|
'max_new_tokens': 10, |
|
}, |
|
'textvqa_val': { |
|
'train': 'data/textvqa/textvqa_train.jsonl', |
|
'test': 'data/textvqa/textvqa_val.jsonl', |
|
'question': 'data/textvqa/textvqa_val_questions.json', |
|
'annotation': 'data/textvqa/textvqa_val_annotations.json', |
|
'metric': 'vqa_score', |
|
'max_new_tokens': 10, |
|
}, |
|
'vizwiz_val': { |
|
'train': 'data/vizwiz/vizwiz_train.jsonl', |
|
'test': 'data/vizwiz/vizwiz_val.jsonl', |
|
'question': 'data/vizwiz/vizwiz_val_questions.json', |
|
'annotation': 'data/vizwiz/vizwiz_val_annotations.json', |
|
'metric': 'vqa_score', |
|
'max_new_tokens': 10, |
|
}, |
|
'docvqa': { |
|
'train': 'data/DocVQA/train.jsonl', |
|
'test': 'data/DocVQA/val.jsonl', |
|
|
|
'annotation': './data/DocVQA/val/val_v1.0.json', |
|
'metric': 'anls', |
|
'max_new_tokens': 100, |
|
}, |
|
'infographicsvqa': { |
|
'train': 'data/InfographicsVQA/train.jsonl', |
|
'test': 'data/InfographicsVQA/val.jsonl', |
|
|
|
'annotation': './data/InfographicsVQA/infographicVQA_val_v1.0.json', |
|
'metric': 'anls', |
|
'max_new_tokens': 100, |
|
}, |
|
'chartqa': { |
|
'train': 'data/ChartQA/train.jsonl', |
|
'test': 'data/ChartQA/val_human.jsonl', |
|
|
|
|
|
'metric': 'relaxed_accuracy', |
|
'max_new_tokens': 100, |
|
}, |
|
'gqa': { |
|
'train': 'data/GQA/train.jsonl', |
|
'test': 'data/GQA/testdev_balanced.jsonl', |
|
|
|
|
|
'metric': 'accuracy', |
|
'max_new_tokens': 10, |
|
}, |
|
'ocrvqa': { |
|
'train': 'data/OCR-VQA/train.jsonl', |
|
'test': 'data/OCR-VQA/val.jsonl', |
|
|
|
|
|
'metric': 'accuracy', |
|
'max_new_tokens': 10, |
|
}, |
|
'ai2diagram': { |
|
'train': 'data/AI2Diagram/train.jsonl', |
|
'test': 'data/AI2Diagram/test.jsonl', |
|
|
|
|
|
'metric': 'accuracy', |
|
'max_new_tokens': 10, |
|
} |
|
} |
|
|
|
|
|
def relaxed_correctness(target: str, |
|
prediction: str, |
|
max_relative_change: float = 0.05) -> bool: |
|
"""Calculates relaxed correctness. |
|
|
|
The correctness tolerates certain error ratio defined by max_relative_change. |
|
See https://arxiv.org/pdf/2203.10244.pdf, end of section 5.1: |
|
“Following Methani et al. (2020), we use a relaxed accuracy measure for the |
|
numeric answers to allow a minor inaccuracy that may result from the automatic |
|
data extraction process. We consider an answer to be correct if it is within |
|
5% of the gold answer. For non-numeric answers, we still need an exact match |
|
to consider an answer to be correct.” |
|
|
|
Args: |
|
target: Target string. |
|
prediction: Predicted string. |
|
max_relative_change: Maximum relative change. |
|
|
|
Returns: |
|
Whether the prediction was correct given the specified tolerance. |
|
""" |
|
|
|
def _to_float(text: str) -> Optional[float]: |
|
try: |
|
if text.endswith("%"): |
|
|
|
return float(text.rstrip("%")) / 100.0 |
|
else: |
|
return float(text) |
|
except ValueError: |
|
return None |
|
|
|
prediction_float = _to_float(prediction) |
|
target_float = _to_float(target) |
|
if prediction_float is not None and target_float: |
|
relative_change = abs( |
|
prediction_float - target_float) / abs(target_float) |
|
return relative_change <= max_relative_change |
|
else: |
|
return prediction.lower() == target.lower() |
|
|
|
def evaluate_relaxed_accuracy(entries): |
|
scores = [] |
|
for elem in entries: |
|
score = max([relaxed_correctness(elem['answer'].strip(), ann) for ann in elem['annotation']]) |
|
scores.append(score) |
|
return sum(scores) / len(scores) |
|
|
|
def evaluate_exact_match_accuracy(entries): |
|
scores = [] |
|
for elem in entries: |
|
score = max([(1.0 if (elem['answer'].strip().lower() == ann.strip().lower()) else 0.0) for ann in elem['annotation']]) |
|
scores.append(score) |
|
return sum(scores) / len(scores) |
|
|
|
|
|
def collate_fn(batches, tokenizer): |
|
|
|
questions = [_['question'] for _ in batches] |
|
question_ids = [_['question_id'] for _ in batches] |
|
annotations = [_['annotation'] for _ in batches] |
|
|
|
input_ids = tokenizer(questions, return_tensors='pt', padding='longest') |
|
|
|
return question_ids, input_ids.input_ids, input_ids.attention_mask, annotations |
|
|
|
|
|
class VQADataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, train, test, prompt, few_shot): |
|
self.test = open(test).readlines() |
|
self.prompt = prompt |
|
|
|
self.few_shot = few_shot |
|
if few_shot > 0: |
|
self.train = open(train).readlines() |
|
|
|
def __len__(self): |
|
return len(self.test) |
|
|
|
def __getitem__(self, idx): |
|
data = json.loads(self.test[idx].strip()) |
|
image, question, question_id, annotation = data['image'], data['question'], data[ |
|
'question_id'], data['answer'] |
|
|
|
few_shot_prompt = '' |
|
if self.few_shot > 0: |
|
few_shot_samples = random.sample(self.train, self.few_shot) |
|
for sample in few_shot_samples: |
|
sample = json.loads(sample.strip()) |
|
few_shot_prompt += self.prompt.format( |
|
sample['image'], |
|
sample['question']) + f" {sample['answer']}" |
|
|
|
return { |
|
'question': few_shot_prompt + self.prompt.format(image, question), |
|
'question_id': question_id, |
|
'annotation': annotation |
|
} |
|
|
|
|
|
class InferenceSampler(torch.utils.data.sampler.Sampler): |
|
|
|
def __init__(self, size): |
|
self._size = int(size) |
|
assert size > 0 |
|
self._rank = torch.distributed.get_rank() |
|
self._world_size = torch.distributed.get_world_size() |
|
self._local_indices = self._get_local_indices(size, self._world_size, |
|
self._rank) |
|
|
|
@staticmethod |
|
def _get_local_indices(total_size, world_size, rank): |
|
shard_size = total_size // world_size |
|
left = total_size % world_size |
|
shard_sizes = [shard_size + int(r < left) for r in range(world_size)] |
|
|
|
begin = sum(shard_sizes[:rank]) |
|
end = min(sum(shard_sizes[:rank + 1]), total_size) |
|
return range(begin, end) |
|
|
|
def __iter__(self): |
|
yield from self._local_indices |
|
|
|
def __len__(self): |
|
return len(self._local_indices) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--checkpoint', type=str, default='') |
|
parser.add_argument('--dataset', type=str, default='') |
|
parser.add_argument('--batch-size', type=int, default=1) |
|
parser.add_argument('--num-workers', type=int, default=1) |
|
parser.add_argument('--few-shot', type=int, default=0) |
|
parser.add_argument('--seed', type=int, default=0) |
|
args = parser.parse_args() |
|
|
|
torch.distributed.init_process_group( |
|
backend='nccl', |
|
world_size=int(os.getenv('WORLD_SIZE', '1')), |
|
rank=int(os.getenv('RANK', '0')), |
|
) |
|
|
|
torch.cuda.set_device(torch.distributed.get_rank()) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.checkpoint, device_map='cuda', trust_remote_code=True).eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, |
|
trust_remote_code=True) |
|
tokenizer.padding_side = 'left' |
|
tokenizer.pad_token_id = tokenizer.eod_id |
|
|
|
prompt = '<img>{}</img>{} Answer:' |
|
|
|
random.seed(args.seed) |
|
dataset = VQADataset( |
|
train=ds_collections[args.dataset]['train'], |
|
test=ds_collections[args.dataset]['test'], |
|
prompt=prompt, |
|
few_shot=args.few_shot, |
|
) |
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
dataset=dataset, |
|
sampler=InferenceSampler(len(dataset)), |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=False, |
|
collate_fn=partial(collate_fn, tokenizer=tokenizer), |
|
) |
|
|
|
outputs = [] |
|
for _, (question_ids, input_ids, |
|
attention_mask, annotations) in tqdm(enumerate(dataloader)): |
|
pred = model.generate( |
|
input_ids=input_ids.cuda(), |
|
attention_mask=attention_mask.cuda(), |
|
do_sample=False, |
|
num_beams=1, |
|
max_new_tokens=ds_collections[args.dataset]['max_new_tokens'], |
|
min_new_tokens=1, |
|
length_penalty=1, |
|
num_return_sequences=1, |
|
output_hidden_states=True, |
|
use_cache=True, |
|
pad_token_id=tokenizer.eod_id, |
|
eos_token_id=tokenizer.eod_id, |
|
) |
|
answers = [ |
|
tokenizer.decode(_[input_ids.size(1):].cpu(), |
|
skip_special_tokens=True).strip() for _ in pred |
|
] |
|
|
|
for question_id, answer, annotation in zip(question_ids, answers, annotations): |
|
try: |
|
outputs.append({'question_id': int(question_id), 'answer': answer, 'annotation': annotation}) |
|
except: |
|
outputs.append({'question_id': question_id, 'answer': answer, 'annotation': annotation}) |
|
|
|
torch.distributed.barrier() |
|
|
|
world_size = torch.distributed.get_world_size() |
|
merged_outputs = [None for _ in range(world_size)] |
|
torch.distributed.all_gather_object(merged_outputs, outputs) |
|
|
|
merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)] |
|
|
|
if torch.distributed.get_rank() == 0: |
|
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) |
|
results_file = f'{args.dataset}_{time_prefix}_fs{args.few_shot}_s{args.seed}.json' |
|
json.dump(merged_outputs, open(results_file, 'w'), |
|
ensure_ascii=False) |
|
|
|
if ds_collections[args.dataset]['metric'] == 'vqa_score': |
|
vqa = VQA(ds_collections[args.dataset]['annotation'], |
|
ds_collections[args.dataset]['question']) |
|
results = vqa.loadRes( |
|
resFile=results_file, |
|
quesFile=ds_collections[args.dataset]['question']) |
|
vqa_scorer = VQAEval(vqa, results, n=2) |
|
vqa_scorer.evaluate() |
|
|
|
print(vqa_scorer.accuracy) |
|
|
|
elif ds_collections[args.dataset]['metric'] == 'anls': |
|
merged_outputs = [{'answer': _['answer'], 'questionId': _['question_id']} for _ in merged_outputs] |
|
results_file = f'{args.dataset}_official_{time_prefix}.json' |
|
json.dump(merged_outputs, open(results_file, 'w'), ensure_ascii=False) |
|
print('python infographicsvqa_eval.py -g ' + ds_collections[args.dataset]['annotation'] + ' -s ' + results_file) |
|
os.system('python infographicsvqa_eval.py -g ' + ds_collections[args.dataset]['annotation'] + ' -s ' + results_file) |
|
elif ds_collections[args.dataset]['metric'] == 'relaxed_accuracy': |
|
print({'relaxed_accuracy': evaluate_relaxed_accuracy(merged_outputs)}) |
|
elif ds_collections[args.dataset]['metric'] == 'accuracy': |
|
if 'gqa' in args.dataset: |
|
for entry in merged_outputs: |
|
response = entry['answer'] |
|
response = response.strip().split('.')[0].split(',')[0].split('!')[0].lower() |
|
if 'is ' in response: |
|
response = response.split('is ')[1] |
|
if 'are ' in response: |
|
response = response.split('are ')[1] |
|
if 'a ' in response: |
|
response = response.split('a ')[1] |
|
if 'an ' in response: |
|
response = response.split('an ')[1] |
|
if 'the ' in response: |
|
response = response.split('the ')[1] |
|
if ' of' in response: |
|
response = response.split(' of')[0] |
|
response = response.strip() |
|
entry['answer'] = response |
|
print({'accuracy': evaluate_exact_match_accuracy(merged_outputs)}) |
|
|
|
torch.distributed.barrier() |
|
|