Ayushk44 commited on
Commit
242a735
·
verified ·
1 Parent(s): a8aaec3

Add files using upload-large-folder tool

Browse files
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. Llama-2-13b-hf/config.json +27 -0
  3. Llama-2-13b-hf/model.safetensors +3 -0
  4. Llama-2-13b-hf_trirun/config.json +31 -0
  5. Llama-2-13b-hf_trirun/configuration_trilmlinear.py +220 -0
  6. Llama-2-13b-hf_trirun/model.safetensors +3 -0
  7. Llama-2-13b-hf_trirun/modeling_trilmlinear.py +1037 -0
  8. Llama-2-70b-hf/config.json +23 -0
  9. Llama-2-70b-hf/model.safetensors.aa +3 -0
  10. Llama-2-70b-hf/model.safetensors.ab +3 -0
  11. Llama-2-70b-hf/model.safetensors.ac +3 -0
  12. Llama-2-70b-hf_trirun/config.json +28 -0
  13. Llama-2-70b-hf_trirun/configuration_trilmlinear.py +220 -0
  14. Llama-2-70b-hf_trirun/model.safetensors +3 -0
  15. Llama-2-70b-hf_trirun/modeling_trilmlinear.py +1037 -0
  16. Llama-2-7b-hf/config.json +25 -0
  17. Llama-2-7b-hf/model.safetensors +3 -0
  18. Llama-2-7b-hf_trirun/config.json +30 -0
  19. Llama-2-7b-hf_trirun/configuration_trilmlinear.py +220 -0
  20. Llama-2-7b-hf_trirun/model.safetensors +3 -0
  21. Llama-2-7b-hf_trirun/modeling_trilmlinear.py +1037 -0
  22. Mistral-Large-Instruct-2407_trirun/config.json +32 -0
  23. Mistral-Large-Instruct-2407_trirun/configuration_trilmlinear.py +220 -0
  24. Mistral-Large-Instruct-2407_trirun/model.safetensors +3 -0
  25. Mistral-Large-Instruct-2407_trirun/modeling_trilmlinear.py +1037 -0
  26. TriLMs/TriLM_1.1B_Unpacked.safetensors +3 -0
  27. TriLMs/TriLM_1.1B_Unpacked_trirun.safetensors +3 -0
  28. TriLMs/TriLM_1.5B_Unpacked.safetensors +3 -0
  29. TriLMs/TriLM_1.5B_Unpacked_trirun.safetensors +3 -0
  30. TriLMs/TriLM_190M_Unpacked.safetensors +3 -0
  31. TriLMs/TriLM_190M_Unpacked_trirun.safetensors +3 -0
  32. TriLMs/TriLM_2.4B_Unpacked.safetensors +3 -0
  33. TriLMs/TriLM_2.4B_Unpacked_trirun.safetensors +3 -0
  34. TriLMs/TriLM_3.9B_Unpacked.safetensors +3 -0
  35. TriLMs/TriLM_3.9B_Unpacked_trirun.safetensors +3 -0
  36. TriLMs/TriLM_390M_Unpacked.safetensors +3 -0
  37. TriLMs/TriLM_390M_Unpacked_trirun.safetensors +3 -0
  38. TriLMs/TriLM_560M_Unpacked.safetensors +3 -0
  39. TriLMs/TriLM_560M_Unpacked_trirun.safetensors +3 -0
  40. TriLMs/TriLM_830M_Unpacked.safetensors +3 -0
  41. TriLMs/TriLM_830M_Unpacked_trirun.safetensors +3 -0
  42. TriLMs/TriLM_99M_Unpacked.safetensors +3 -0
  43. TriLMs/TriLM_99M_Unpacked_trirun.safetensors +3 -0
  44. Yi-34B/config.json +26 -0
  45. Yi-34B/model.safetensors.aa +3 -0
  46. Yi-34B/model.safetensors.ab +3 -0
  47. Yi-34B_trirun/config.json +31 -0
  48. Yi-34B_trirun/configuration_trilmlinear.py +220 -0
  49. Yi-34B_trirun/model.safetensors +3 -0
  50. Yi-34B_trirun/modeling_trilmlinear.py +1037 -0
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Yi-34B/model.safetensors.aa filter=lfs diff=lfs merge=lfs -text
37
+ Yi-34B/model.safetensors.ab filter=lfs diff=lfs merge=lfs -text
38
+ Llama-2-70b-hf/model.safetensors.ab filter=lfs diff=lfs merge=lfs -text
39
+ Llama-2-70b-hf/model.safetensors.aa filter=lfs diff=lfs merge=lfs -text
40
+ Llama-2-70b-hf/model.safetensors.ac filter=lfs diff=lfs merge=lfs -text
Llama-2-13b-hf/config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-13b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_position_embeddings": 4096,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 40,
15
+ "num_hidden_layers": 40,
16
+ "num_key_value_heads": 40,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.31.0.dev0",
24
+ "use_cache": true,
25
+ "vocab_size": 32000
26
+ }
27
+
Llama-2-13b-hf/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43eb9b51d223f73caa66686db6b0f985661b1119fea816ae8c919a3336a43696
3
+ size 26031770968
Llama-2-13b-hf_trirun/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TriLMLinearForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_trilmlinear.TriLMLinearConfig",
7
+ "AutoModel": "modeling_trilmlinear.TriLMLinearModel",
8
+ "AutoModelForCausalLM": "modeling_trilmlinear.TriLMLinearForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_position_embeddings": 4096,
17
+ "model_type": "TriLMLinear",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pad_token_id": 0,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "float16",
27
+ "transformers_version": "4.31.0.dev0",
28
+ "use_cache": true,
29
+ "vocab_size": 32000
30
+ }
31
+
Llama-2-13b-hf_trirun/configuration_trilmlinear.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """TriLMLinear model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class TriLMLinearConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`TriLMLinearModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_attention_heads
128
+
129
+ ```python
130
+ >>> from transformers import LlamaModel, LlamaConfig
131
+
132
+ >>> # Initializing a LLaMA llama-7b style configuration
133
+ >>> configuration = LlamaConfig()
134
+
135
+ >>> # Initializing a model from the llama-7b style configuration
136
+ >>> model = LlamaModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "TriLMLinear"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+ # Default tensor parallel plan for base model `LlamaModel`
145
+ base_model_tp_plan = {
146
+ "layers.*.self_attn.q_proj": "colwise",
147
+ "layers.*.self_attn.k_proj": "colwise",
148
+ "layers.*.self_attn.v_proj": "colwise",
149
+ "layers.*.self_attn.o_proj": "rowwise",
150
+ "layers.*.mlp.gate_proj": "colwise",
151
+ "layers.*.mlp.up_proj": "colwise",
152
+ "layers.*.mlp.down_proj": "rowwise",
153
+ }
154
+
155
+ def __init__(
156
+ self,
157
+ vocab_size=32000,
158
+ hidden_size=4096,
159
+ intermediate_size=11008,
160
+ num_hidden_layers=32,
161
+ num_attention_heads=32,
162
+ num_key_value_heads=None,
163
+ hidden_act="silu",
164
+ max_position_embeddings=2048,
165
+ initializer_range=0.02,
166
+ rms_norm_eps=1e-6,
167
+ use_cache=True,
168
+ pad_token_id=None,
169
+ bos_token_id=1,
170
+ eos_token_id=2,
171
+ pretraining_tp=1,
172
+ tie_word_embeddings=False,
173
+ rope_theta=10000.0,
174
+ rope_scaling=None,
175
+ attention_bias=False,
176
+ attention_dropout=0.0,
177
+ mlp_bias=False,
178
+ head_dim=None,
179
+ **kwargs,
180
+ ):
181
+ self.vocab_size = vocab_size
182
+ self.max_position_embeddings = max_position_embeddings
183
+ self.hidden_size = hidden_size
184
+ self.intermediate_size = intermediate_size
185
+ self.num_hidden_layers = num_hidden_layers
186
+ self.num_attention_heads = num_attention_heads
187
+
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = rms_norm_eps
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.mlp_bias = mlp_bias
203
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
204
+ # Validate the correctness of rotary position embeddings parameters
205
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
206
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
207
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
208
+ rope_config_validation(self)
209
+
210
+ super().__init__(
211
+ pad_token_id=pad_token_id,
212
+ bos_token_id=bos_token_id,
213
+ eos_token_id=eos_token_id,
214
+ tie_word_embeddings=tie_word_embeddings,
215
+ **kwargs,
216
+ )
217
+
218
+
219
+ __all__ = ["TriLMLinearConfig"]
220
+
Llama-2-13b-hf_trirun/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fc83b33d61dd62f88a9b0f98aa41403d93c4622020fab28324f735bf5a1cc5d
3
+ size 3832466504
Llama-2-13b-hf_trirun/modeling_trilmlinear.py ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ from typing import Callable, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
28
+ from transformers.generation import GenerationMixin
29
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
30
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
39
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
40
+ from transformers.processing_utils import Unpack
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
42
+ from transformers.utils import (
43
+ LossKwargs,
44
+ add_code_sample_docstrings,
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.deprecation import deprecate_kwarg
51
+ from .configuration_trilmlinear import TriLMLinearConfig
52
+ import marlin
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+
57
+
58
+ class TriLMLinear(torch.nn.Module):
59
+ def __init__(self, in_dims, out_dims, thread_k=128, thread_n=128, groupsize=-1, sms=-1):
60
+ super(TriLMLinear, self).__init__()
61
+ self.in_dims, self.out_dims = in_dims, out_dims
62
+ self.thread_k, self.thread_n, self.groupsize, self.sms = thread_k, thread_n, groupsize, sms
63
+ packed_weight = torch.ones((in_dims//16, out_dims), dtype=torch.int32)
64
+ scales = torch.ones((1, out_dims), dtype=torch.float16)
65
+ self.register_buffer("packed_weight", packed_weight)
66
+ self.register_buffer("scales", scales)
67
+ self.workspace = torch.zeros(self.out_dims // 128 * 16, device="cuda")
68
+ def forward(self, hidden_state):
69
+ # print(A, self.name)
70
+ batch_size, seqlen, last_dim = hidden_state.shape
71
+ output = torch.zeros((batch_size * seqlen, self.out_dims), dtype=torch.float16, device=self.packed_weight.device)
72
+ marlin.mul(hidden_state.reshape(batch_size * seqlen, last_dim).contiguous(), self.packed_weight, output, self.scales,
73
+ self.workspace, self.thread_k, self.thread_n, self.sms)
74
+ return output.reshape(batch_size, seqlen, -1)
75
+
76
+
77
+ class TriLMLinearRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ TriLMLinearRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ hidden_states = hidden_states.to(torch.float32)
89
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
90
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
91
+ return self.weight * hidden_states.to(input_dtype)
92
+
93
+ def extra_repr(self):
94
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
95
+
96
+
97
+ ALL_LAYERNORM_LAYERS.append(TriLMLinearRMSNorm)
98
+
99
+
100
+ class TriLMLinearRotaryEmbedding(nn.Module):
101
+ def __init__(self, config: TriLMLinearConfig, device=None):
102
+ super().__init__()
103
+ # BC: "rope_type" was originally "type"
104
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
105
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
106
+ else:
107
+ self.rope_type = "default"
108
+ self.max_seq_len_cached = config.max_position_embeddings
109
+ self.original_max_seq_len = config.max_position_embeddings
110
+
111
+ self.config = config
112
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
113
+
114
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
115
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
116
+ self.original_inv_freq = self.inv_freq
117
+
118
+ def _dynamic_frequency_update(self, position_ids, device):
119
+ """
120
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
121
+ 1 - growing beyond the cached sequence length (allow scaling)
122
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
123
+ """
124
+ seq_len = torch.max(position_ids) + 1
125
+ if seq_len > self.max_seq_len_cached: # growth
126
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
127
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
128
+ self.max_seq_len_cached = seq_len
129
+
130
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
131
+ # This .to() is needed if the model has been moved to a device after being initialized (because
132
+ # the buffer is automatically moved, but not the original copy)
133
+ self.original_inv_freq = self.original_inv_freq.to(device)
134
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
135
+ self.max_seq_len_cached = self.original_max_seq_len
136
+
137
+ @torch.no_grad()
138
+ def forward(self, x, position_ids):
139
+ if "dynamic" in self.rope_type:
140
+ self._dynamic_frequency_update(position_ids, device=x.device)
141
+
142
+ # Core RoPE block
143
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
144
+ position_ids_expanded = position_ids[:, None, :].float()
145
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
146
+ device_type = x.device.type
147
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
148
+ with torch.autocast(device_type=device_type, enabled=False):
149
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
150
+ emb = torch.cat((freqs, freqs), dim=-1)
151
+ cos = emb.cos()
152
+ sin = emb.sin()
153
+
154
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
155
+ cos = cos * self.attention_scaling
156
+ sin = sin * self.attention_scaling
157
+
158
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
159
+
160
+
161
+ def rotate_half(x):
162
+ """Rotates half the hidden dims of the input."""
163
+ x1 = x[..., : x.shape[-1] // 2]
164
+ x2 = x[..., x.shape[-1] // 2 :]
165
+ return torch.cat((-x2, x1), dim=-1)
166
+
167
+
168
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
169
+ """Applies Rotary Position Embedding to the query and key tensors.
170
+
171
+ Args:
172
+ q (`torch.Tensor`): The query tensor.
173
+ k (`torch.Tensor`): The key tensor.
174
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
175
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
176
+ position_ids (`torch.Tensor`, *optional*):
177
+ Deprecated and unused.
178
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
179
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
180
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
181
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
182
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
183
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
184
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
185
+ Returns:
186
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
187
+ """
188
+ cos = cos.unsqueeze(unsqueeze_dim)
189
+ sin = sin.unsqueeze(unsqueeze_dim)
190
+ q_embed = (q * cos) + (rotate_half(q) * sin)
191
+ k_embed = (k * cos) + (rotate_half(k) * sin)
192
+ return q_embed, k_embed
193
+
194
+
195
+ class TriLMLinearMLP(nn.Module):
196
+ def __init__(self, config):
197
+ super().__init__()
198
+ self.config = config
199
+ self.hidden_size = config.hidden_size
200
+ self.intermediate_size = config.intermediate_size
201
+ assert config.mlp_bias == False, config.mlp_bias
202
+ self.gate_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
203
+ self.up_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
204
+ self.down_proj = TriLMLinear(self.intermediate_size, self.hidden_size)
205
+ self.act_fn = ACT2FN[config.hidden_act]
206
+
207
+ def forward(self, x):
208
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
209
+ return down_proj
210
+
211
+
212
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
213
+ """
214
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
215
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
216
+ """
217
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
218
+ if n_rep == 1:
219
+ return hidden_states
220
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
221
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
222
+
223
+
224
+ def eager_attention_forward(
225
+ module: nn.Module,
226
+ query: torch.Tensor,
227
+ key: torch.Tensor,
228
+ value: torch.Tensor,
229
+ attention_mask: Optional[torch.Tensor],
230
+ scaling: float,
231
+ dropout: float = 0.0,
232
+ **kwargs,
233
+ ):
234
+ key_states = repeat_kv(key, module.num_key_value_groups)
235
+ value_states = repeat_kv(value, module.num_key_value_groups)
236
+
237
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
238
+ if attention_mask is not None:
239
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
240
+ attn_weights = attn_weights + causal_mask
241
+
242
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
243
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
244
+ attn_output = torch.matmul(attn_weights, value_states)
245
+ attn_output = attn_output.transpose(1, 2).contiguous()
246
+
247
+ return attn_output, attn_weights
248
+
249
+
250
+ class TriLMLinearAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
254
+ super().__init__()
255
+ self.config = config
256
+ self.layer_idx = layer_idx
257
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
258
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
259
+ self.scaling = self.head_dim**-0.5
260
+ self.attention_dropout = config.attention_dropout
261
+ self.is_causal = True
262
+ assert config.attention_bias == False
263
+ self.q_proj = TriLMLinear(
264
+ config.hidden_size, config.num_attention_heads * self.head_dim#, bias=config.attention_bias
265
+ )
266
+ self.k_proj = TriLMLinear(
267
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
268
+ )
269
+ self.v_proj = TriLMLinear(
270
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
271
+ )
272
+ self.o_proj = TriLMLinear(
273
+ config.num_attention_heads * self.head_dim, config.hidden_size#, bias=config.attention_bias
274
+ )
275
+
276
+ def forward(
277
+ self,
278
+ hidden_states: torch.Tensor,
279
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
280
+ attention_mask: Optional[torch.Tensor],
281
+ past_key_value: Optional[Cache] = None,
282
+ cache_position: Optional[torch.LongTensor] = None,
283
+ **kwargs: Unpack[FlashAttentionKwargs],
284
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
285
+ input_shape = hidden_states.shape[:-1]
286
+ hidden_shape = (*input_shape, -1, self.head_dim)
287
+
288
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
289
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
290
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
291
+
292
+ cos, sin = position_embeddings
293
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
294
+
295
+ if past_key_value is not None:
296
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
297
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
298
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
299
+
300
+ attention_interface: Callable = eager_attention_forward
301
+ if self.config._attn_implementation != "eager":
302
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
303
+ logger.warning_once(
304
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
305
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
306
+ )
307
+ else:
308
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
309
+
310
+ attn_output, attn_weights = attention_interface(
311
+ self,
312
+ query_states,
313
+ key_states,
314
+ value_states,
315
+ attention_mask,
316
+ dropout=0.0 if not self.training else self.attention_dropout,
317
+ scaling=self.scaling,
318
+ **kwargs,
319
+ )
320
+
321
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
322
+ attn_output = self.o_proj(attn_output)
323
+ return attn_output, attn_weights
324
+
325
+
326
+ class TriLMLinearDecoderLayer(nn.Module):
327
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
328
+ super().__init__()
329
+ self.hidden_size = config.hidden_size
330
+
331
+ self.self_attn = TriLMLinearAttention(config=config, layer_idx=layer_idx)
332
+
333
+ self.mlp = TriLMLinearMLP(config)
334
+ self.input_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
335
+ self.post_attention_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
336
+
337
+ def forward(
338
+ self,
339
+ hidden_states: torch.Tensor,
340
+ attention_mask: Optional[torch.Tensor] = None,
341
+ position_ids: Optional[torch.LongTensor] = None,
342
+ past_key_value: Optional[Cache] = None,
343
+ output_attentions: Optional[bool] = False,
344
+ use_cache: Optional[bool] = False,
345
+ cache_position: Optional[torch.LongTensor] = None,
346
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
347
+ **kwargs: Unpack[FlashAttentionKwargs],
348
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
349
+ residual = hidden_states
350
+
351
+ hidden_states = self.input_layernorm(hidden_states)
352
+
353
+ # Self Attention
354
+ hidden_states, self_attn_weights = self.self_attn(
355
+ hidden_states=hidden_states,
356
+ attention_mask=attention_mask,
357
+ position_ids=position_ids,
358
+ past_key_value=past_key_value,
359
+ output_attentions=output_attentions,
360
+ use_cache=use_cache,
361
+ cache_position=cache_position,
362
+ position_embeddings=position_embeddings,
363
+ **kwargs,
364
+ )
365
+ hidden_states = residual + hidden_states
366
+
367
+ # Fully Connected
368
+ residual = hidden_states
369
+ hidden_states = self.post_attention_layernorm(hidden_states)
370
+ hidden_states = self.mlp(hidden_states)
371
+ hidden_states = residual + hidden_states
372
+
373
+ outputs = (hidden_states,)
374
+ if output_attentions:
375
+ outputs += (self_attn_weights,)
376
+
377
+ return outputs
378
+
379
+
380
+ class TriLMLinearPreTrainedModel(PreTrainedModel):
381
+ config_class = TriLMLinearConfig
382
+ base_model_prefix = "model"
383
+ supports_gradient_checkpointing = True
384
+ _no_split_modules = ["TriLMLinearDecoderLayer"]
385
+ _skip_keys_device_placement = ["past_key_values"]
386
+ _supports_flash_attn_2 = True
387
+ _supports_sdpa = True
388
+ _supports_flex_attn = True
389
+ _supports_cache_class = True
390
+ _supports_quantized_cache = True
391
+ _supports_static_cache = True
392
+ _supports_attention_backend = True
393
+
394
+ def _init_weights(self, module):
395
+ std = self.config.initializer_range
396
+ if isinstance(module, nn.Linear):
397
+ module.weight.data.normal_(mean=0.0, std=std)
398
+ if module.bias is not None:
399
+ module.bias.data.zero_()
400
+ elif isinstance(module, nn.Embedding):
401
+ module.weight.data.normal_(mean=0.0, std=std)
402
+ if module.padding_idx is not None:
403
+ module.weight.data[module.padding_idx].zero_()
404
+
405
+
406
+
407
+
408
+ class TriLMLinearModel(TriLMLinearPreTrainedModel):
409
+ """
410
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TriLMLinearDecoderLayer`]
411
+
412
+ Args:
413
+ config: TriLMLinearConfig
414
+ """
415
+
416
+ def __init__(self, config: TriLMLinearConfig):
417
+ super().__init__(config)
418
+ self.padding_idx = config.pad_token_id
419
+ self.vocab_size = config.vocab_size
420
+
421
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
422
+ self.layers = nn.ModuleList(
423
+ [TriLMLinearDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
424
+ )
425
+ self.norm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
426
+ self.rotary_emb = TriLMLinearRotaryEmbedding(config=config)
427
+ self.gradient_checkpointing = False
428
+
429
+ # Initialize weights and apply final processing
430
+ self.post_init()
431
+
432
+ def get_input_embeddings(self):
433
+ return self.embed_tokens
434
+
435
+ def set_input_embeddings(self, value):
436
+ self.embed_tokens = value
437
+
438
+ def forward(
439
+ self,
440
+ input_ids: torch.LongTensor = None,
441
+ attention_mask: Optional[torch.Tensor] = None,
442
+ position_ids: Optional[torch.LongTensor] = None,
443
+ past_key_values: Optional[Cache] = None,
444
+ inputs_embeds: Optional[torch.FloatTensor] = None,
445
+ use_cache: Optional[bool] = None,
446
+ output_attentions: Optional[bool] = None,
447
+ output_hidden_states: Optional[bool] = None,
448
+ return_dict: Optional[bool] = None,
449
+ cache_position: Optional[torch.LongTensor] = None,
450
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
451
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
452
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
453
+ output_hidden_states = (
454
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
455
+ )
456
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
457
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
458
+
459
+ if (input_ids is None) ^ (inputs_embeds is not None):
460
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
461
+
462
+ if self.gradient_checkpointing and self.training and use_cache:
463
+ logger.warning_once(
464
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
465
+ )
466
+ use_cache = False
467
+
468
+ if inputs_embeds is None:
469
+ inputs_embeds = self.embed_tokens(input_ids)
470
+
471
+ if use_cache and past_key_values is None:
472
+ past_key_values = DynamicCache()
473
+
474
+ if cache_position is None:
475
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
476
+ cache_position = torch.arange(
477
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
478
+ )
479
+
480
+ if position_ids is None:
481
+ position_ids = cache_position.unsqueeze(0)
482
+
483
+ causal_mask = self._update_causal_mask(
484
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
485
+ )
486
+
487
+ hidden_states = inputs_embeds
488
+
489
+ # create position embeddings to be shared across the decoder layers
490
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
491
+
492
+ # decoder layers
493
+ all_hidden_states = () if output_hidden_states else None
494
+ all_self_attns = () if output_attentions else None
495
+
496
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
497
+ if output_hidden_states:
498
+ all_hidden_states += (hidden_states,)
499
+
500
+ if self.gradient_checkpointing and self.training:
501
+ layer_outputs = self._gradient_checkpointing_func(
502
+ decoder_layer.__call__,
503
+ hidden_states,
504
+ causal_mask,
505
+ position_ids,
506
+ past_key_values,
507
+ output_attentions,
508
+ use_cache,
509
+ cache_position,
510
+ position_embeddings,
511
+ )
512
+ else:
513
+ layer_outputs = decoder_layer(
514
+ hidden_states,
515
+ attention_mask=causal_mask,
516
+ position_ids=position_ids,
517
+ past_key_value=past_key_values,
518
+ output_attentions=output_attentions,
519
+ use_cache=use_cache,
520
+ cache_position=cache_position,
521
+ position_embeddings=position_embeddings,
522
+ **flash_attn_kwargs,
523
+ )
524
+
525
+ hidden_states = layer_outputs[0]
526
+
527
+ if output_attentions:
528
+ all_self_attns += (layer_outputs[1],)
529
+
530
+ hidden_states = self.norm(hidden_states)
531
+
532
+ # add hidden states from the last decoder layer
533
+ if output_hidden_states:
534
+ all_hidden_states += (hidden_states,)
535
+
536
+ output = BaseModelOutputWithPast(
537
+ last_hidden_state=hidden_states,
538
+ past_key_values=past_key_values if use_cache else None,
539
+ hidden_states=all_hidden_states,
540
+ attentions=all_self_attns,
541
+ )
542
+ return output if return_dict else output.to_tuple()
543
+
544
+ def _update_causal_mask(
545
+ self,
546
+ attention_mask: torch.Tensor,
547
+ input_tensor: torch.Tensor,
548
+ cache_position: torch.Tensor,
549
+ past_key_values: Cache,
550
+ output_attentions: bool,
551
+ ):
552
+ if self.config._attn_implementation == "flash_attention_2":
553
+ if attention_mask is not None and (attention_mask == 0.0).any():
554
+ return attention_mask
555
+ return None
556
+
557
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
558
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
559
+ # to infer the attention mask.
560
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
561
+ using_static_cache = isinstance(past_key_values, StaticCache)
562
+
563
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
564
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
565
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
566
+ attention_mask,
567
+ inputs_embeds=input_tensor,
568
+ past_key_values_length=past_seen_tokens,
569
+ is_training=self.training,
570
+ ):
571
+ return None
572
+
573
+ dtype, device = input_tensor.dtype, input_tensor.device
574
+ sequence_length = input_tensor.shape[1]
575
+ if using_static_cache:
576
+ target_length = past_key_values.get_max_cache_shape()
577
+ else:
578
+ target_length = (
579
+ attention_mask.shape[-1]
580
+ if isinstance(attention_mask, torch.Tensor)
581
+ else past_seen_tokens + sequence_length + 1
582
+ )
583
+
584
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
585
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
586
+ attention_mask,
587
+ sequence_length=sequence_length,
588
+ target_length=target_length,
589
+ dtype=dtype,
590
+ device=device,
591
+ cache_position=cache_position,
592
+ batch_size=input_tensor.shape[0],
593
+ )
594
+
595
+ if (
596
+ self.config._attn_implementation == "sdpa"
597
+ and attention_mask is not None
598
+ and attention_mask.device.type == "cuda"
599
+ and not output_attentions
600
+ ):
601
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
602
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
603
+ # Details: https://github.com/pytorch/pytorch/issues/110213
604
+ min_dtype = torch.finfo(dtype).min
605
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
606
+
607
+ return causal_mask
608
+
609
+ @staticmethod
610
+ def _prepare_4d_causal_attention_mask_with_cache_position(
611
+ attention_mask: torch.Tensor,
612
+ sequence_length: int,
613
+ target_length: int,
614
+ dtype: torch.dtype,
615
+ device: torch.device,
616
+ cache_position: torch.Tensor,
617
+ batch_size: int,
618
+ **kwargs,
619
+ ):
620
+ """
621
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
622
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
623
+
624
+ Args:
625
+ attention_mask (`torch.Tensor`):
626
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
627
+ `(batch_size, 1, query_length, key_value_length)`.
628
+ sequence_length (`int`):
629
+ The sequence length being processed.
630
+ target_length (`int`):
631
+ The target length: when generating with static cache, the mask should be as long as the static cache,
632
+ to account for the 0 padding, the part of the cache that is not filled yet.
633
+ dtype (`torch.dtype`):
634
+ The dtype to use for the 4D attention mask.
635
+ device (`torch.device`):
636
+ The device to plcae the 4D attention mask on.
637
+ cache_position (`torch.Tensor`):
638
+ Indices depicting the position of the input sequence tokens in the sequence.
639
+ batch_size (`torch.Tensor`):
640
+ Batch size.
641
+ """
642
+ if attention_mask is not None and attention_mask.dim() == 4:
643
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
644
+ causal_mask = attention_mask
645
+ else:
646
+ min_dtype = torch.finfo(dtype).min
647
+ causal_mask = torch.full(
648
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
649
+ )
650
+ if sequence_length != 1:
651
+ causal_mask = torch.triu(causal_mask, diagonal=1)
652
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
653
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
654
+ if attention_mask is not None:
655
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
656
+ mask_length = attention_mask.shape[-1]
657
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
658
+ padding_mask = padding_mask == 0
659
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
660
+ padding_mask, min_dtype
661
+ )
662
+
663
+ return causal_mask
664
+
665
+
666
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
667
+
668
+
669
+ class TriLMLinearForCausalLM(TriLMLinearPreTrainedModel, GenerationMixin):
670
+ _tied_weights_keys = ["lm_head.weight"]
671
+ _tp_plan = {"lm_head": "colwise_rep"}
672
+
673
+ def __init__(self, config):
674
+ super().__init__(config)
675
+ self.model = TriLMLinearModel(config)
676
+ self.vocab_size = config.vocab_size
677
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
678
+
679
+ # Initialize weights and apply final processing
680
+ self.post_init()
681
+
682
+ def get_input_embeddings(self):
683
+ return self.model.embed_tokens
684
+
685
+ def set_input_embeddings(self, value):
686
+ self.model.embed_tokens = value
687
+
688
+ def get_output_embeddings(self):
689
+ return self.lm_head
690
+
691
+ def set_output_embeddings(self, new_embeddings):
692
+ self.lm_head = new_embeddings
693
+
694
+ def set_decoder(self, decoder):
695
+ self.model = decoder
696
+
697
+ def get_decoder(self):
698
+ return self.model
699
+
700
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
701
+ def forward(
702
+ self,
703
+ input_ids: torch.LongTensor = None,
704
+ attention_mask: Optional[torch.Tensor] = None,
705
+ position_ids: Optional[torch.LongTensor] = None,
706
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
707
+ inputs_embeds: Optional[torch.FloatTensor] = None,
708
+ labels: Optional[torch.LongTensor] = None,
709
+ use_cache: Optional[bool] = None,
710
+ output_attentions: Optional[bool] = None,
711
+ output_hidden_states: Optional[bool] = None,
712
+ return_dict: Optional[bool] = None,
713
+ cache_position: Optional[torch.LongTensor] = None,
714
+ logits_to_keep: Union[int, torch.Tensor] = 0,
715
+ **kwargs: Unpack[KwargsForCausalLM],
716
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
717
+ r"""
718
+ Args:
719
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
720
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
721
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
722
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
723
+
724
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
725
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
726
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
727
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
728
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
729
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
730
+
731
+ Returns:
732
+
733
+ Example:
734
+
735
+ ```python
736
+ >>> from transformers import AutoTokenizer, TriLMLinearForCausalLM
737
+
738
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
739
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
740
+
741
+ >>> # Generate
742
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
743
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
744
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
745
+ ```"""
746
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
747
+ output_hidden_states = (
748
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
749
+ )
750
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
751
+
752
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
753
+ outputs = self.model(
754
+ input_ids=input_ids,
755
+ attention_mask=attention_mask,
756
+ position_ids=position_ids,
757
+ past_key_values=past_key_values,
758
+ inputs_embeds=inputs_embeds,
759
+ use_cache=use_cache,
760
+ output_attentions=output_attentions,
761
+ output_hidden_states=output_hidden_states,
762
+ return_dict=return_dict,
763
+ cache_position=cache_position,
764
+ **kwargs,
765
+ )
766
+
767
+ hidden_states = outputs[0]
768
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
769
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
770
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
771
+
772
+ loss = None
773
+ if labels is not None:
774
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
775
+
776
+ if not return_dict:
777
+ output = (logits,) + outputs[1:]
778
+ return (loss,) + output if loss is not None else output
779
+
780
+ return CausalLMOutputWithPast(
781
+ loss=loss,
782
+ logits=logits,
783
+ past_key_values=outputs.past_key_values,
784
+ hidden_states=outputs.hidden_states,
785
+ attentions=outputs.attentions,
786
+ )
787
+
788
+
789
+ class TriLMLinearForSequenceClassification(TriLMLinearPreTrainedModel):
790
+ def __init__(self, config):
791
+ super().__init__(config)
792
+ self.num_labels = config.num_labels
793
+ self.model = TriLMLinearModel(config)
794
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
795
+
796
+ # Initialize weights and apply final processing
797
+ self.post_init()
798
+
799
+ def get_input_embeddings(self):
800
+ return self.model.embed_tokens
801
+
802
+ def set_input_embeddings(self, value):
803
+ self.model.embed_tokens = value
804
+
805
+ def forward(
806
+ self,
807
+ input_ids: Optional[torch.LongTensor] = None,
808
+ attention_mask: Optional[torch.Tensor] = None,
809
+ position_ids: Optional[torch.LongTensor] = None,
810
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
811
+ inputs_embeds: Optional[torch.FloatTensor] = None,
812
+ labels: Optional[torch.LongTensor] = None,
813
+ use_cache: Optional[bool] = None,
814
+ output_attentions: Optional[bool] = None,
815
+ output_hidden_states: Optional[bool] = None,
816
+ return_dict: Optional[bool] = None,
817
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
818
+ r"""
819
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
820
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
821
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
822
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
823
+ """
824
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
825
+
826
+ transformer_outputs = self.model(
827
+ input_ids,
828
+ attention_mask=attention_mask,
829
+ position_ids=position_ids,
830
+ past_key_values=past_key_values,
831
+ inputs_embeds=inputs_embeds,
832
+ use_cache=use_cache,
833
+ output_attentions=output_attentions,
834
+ output_hidden_states=output_hidden_states,
835
+ return_dict=return_dict,
836
+ )
837
+ hidden_states = transformer_outputs[0]
838
+ logits = self.score(hidden_states)
839
+
840
+ if input_ids is not None:
841
+ batch_size = input_ids.shape[0]
842
+ else:
843
+ batch_size = inputs_embeds.shape[0]
844
+
845
+ if self.config.pad_token_id is None and batch_size != 1:
846
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
847
+ if self.config.pad_token_id is None:
848
+ sequence_lengths = -1
849
+ else:
850
+ if input_ids is not None:
851
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
852
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
853
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
854
+ sequence_lengths = sequence_lengths.to(logits.device)
855
+ else:
856
+ sequence_lengths = -1
857
+
858
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
859
+
860
+ loss = None
861
+ if labels is not None:
862
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
863
+
864
+ if not return_dict:
865
+ output = (pooled_logits,) + transformer_outputs[1:]
866
+ return ((loss,) + output) if loss is not None else output
867
+
868
+ return SequenceClassifierOutputWithPast(
869
+ loss=loss,
870
+ logits=pooled_logits,
871
+ past_key_values=transformer_outputs.past_key_values,
872
+ hidden_states=transformer_outputs.hidden_states,
873
+ attentions=transformer_outputs.attentions,
874
+ )
875
+
876
+
877
+ class TriLMLinearForQuestionAnswering(TriLMLinearPreTrainedModel):
878
+ base_model_prefix = "transformer"
879
+
880
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TriLMLinear
881
+ def __init__(self, config):
882
+ super().__init__(config)
883
+ self.transformer = TriLMLinearModel(config)
884
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
885
+
886
+ # Initialize weights and apply final processing
887
+ self.post_init()
888
+
889
+ def get_input_embeddings(self):
890
+ return self.transformer.embed_tokens
891
+
892
+ def set_input_embeddings(self, value):
893
+ self.transformer.embed_tokens = value
894
+
895
+ def forward(
896
+ self,
897
+ input_ids: Optional[torch.LongTensor] = None,
898
+ attention_mask: Optional[torch.FloatTensor] = None,
899
+ position_ids: Optional[torch.LongTensor] = None,
900
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
901
+ inputs_embeds: Optional[torch.FloatTensor] = None,
902
+ start_positions: Optional[torch.LongTensor] = None,
903
+ end_positions: Optional[torch.LongTensor] = None,
904
+ output_attentions: Optional[bool] = None,
905
+ output_hidden_states: Optional[bool] = None,
906
+ return_dict: Optional[bool] = None,
907
+ **kwargs,
908
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
909
+ r"""
910
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
911
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
912
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
913
+ are not taken into account for computing the loss.
914
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
915
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
916
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
917
+ are not taken into account for computing the loss.
918
+ """
919
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
920
+
921
+ outputs = self.transformer(
922
+ input_ids,
923
+ attention_mask=attention_mask,
924
+ position_ids=position_ids,
925
+ past_key_values=past_key_values,
926
+ inputs_embeds=inputs_embeds,
927
+ output_attentions=output_attentions,
928
+ output_hidden_states=output_hidden_states,
929
+ return_dict=return_dict,
930
+ )
931
+
932
+ sequence_output = outputs[0]
933
+
934
+ logits = self.qa_outputs(sequence_output)
935
+ start_logits, end_logits = logits.split(1, dim=-1)
936
+ start_logits = start_logits.squeeze(-1).contiguous()
937
+ end_logits = end_logits.squeeze(-1).contiguous()
938
+
939
+ loss = None
940
+ if start_positions is not None and end_positions is not None:
941
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
942
+
943
+ if not return_dict:
944
+ output = (start_logits, end_logits) + outputs[2:]
945
+ return ((loss,) + output) if loss is not None else output
946
+
947
+ return QuestionAnsweringModelOutput(
948
+ loss=loss,
949
+ start_logits=start_logits,
950
+ end_logits=end_logits,
951
+ hidden_states=outputs.hidden_states,
952
+ attentions=outputs.attentions,
953
+ )
954
+
955
+ class TriLMLinearForTokenClassification(TriLMLinearPreTrainedModel):
956
+ def __init__(self, config):
957
+ super().__init__(config)
958
+ self.num_labels = config.num_labels
959
+ self.model = TriLMLinearModel(config)
960
+ if getattr(config, "classifier_dropout", None) is not None:
961
+ classifier_dropout = config.classifier_dropout
962
+ elif getattr(config, "hidden_dropout", None) is not None:
963
+ classifier_dropout = config.hidden_dropout
964
+ else:
965
+ classifier_dropout = 0.1
966
+ self.dropout = nn.Dropout(classifier_dropout)
967
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
968
+
969
+ # Initialize weights and apply final processing
970
+ self.post_init()
971
+
972
+ def get_input_embeddings(self):
973
+ return self.model.embed_tokens
974
+
975
+ def set_input_embeddings(self, value):
976
+ self.model.embed_tokens = value
977
+
978
+ def forward(
979
+ self,
980
+ input_ids: Optional[torch.LongTensor] = None,
981
+ attention_mask: Optional[torch.Tensor] = None,
982
+ position_ids: Optional[torch.LongTensor] = None,
983
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
984
+ inputs_embeds: Optional[torch.FloatTensor] = None,
985
+ labels: Optional[torch.LongTensor] = None,
986
+ use_cache: Optional[bool] = None,
987
+ output_attentions: Optional[bool] = None,
988
+ output_hidden_states: Optional[bool] = None,
989
+ return_dict: Optional[bool] = None,
990
+ ) -> Union[Tuple, TokenClassifierOutput]:
991
+ r"""
992
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
993
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
994
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
995
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
996
+ """
997
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
998
+
999
+ outputs = self.model(
1000
+ input_ids,
1001
+ attention_mask=attention_mask,
1002
+ position_ids=position_ids,
1003
+ past_key_values=past_key_values,
1004
+ inputs_embeds=inputs_embeds,
1005
+ use_cache=use_cache,
1006
+ output_attentions=output_attentions,
1007
+ output_hidden_states=output_hidden_states,
1008
+ return_dict=return_dict,
1009
+ )
1010
+ sequence_output = outputs[0]
1011
+ sequence_output = self.dropout(sequence_output)
1012
+ logits = self.score(sequence_output)
1013
+
1014
+ loss = None
1015
+ if labels is not None:
1016
+ loss = self.loss_function(logits, labels, self.config)
1017
+
1018
+ if not return_dict:
1019
+ output = (logits,) + outputs[2:]
1020
+ return ((loss,) + output) if loss is not None else output
1021
+
1022
+ return TokenClassifierOutput(
1023
+ loss=loss,
1024
+ logits=logits,
1025
+ hidden_states=outputs.hidden_states,
1026
+ attentions=outputs.attentions,
1027
+ )
1028
+
1029
+
1030
+ __all__ = [
1031
+ "TriLMLinearForCausalLM",
1032
+ "TriLMLinearModel",
1033
+ "TriLMLinearPreTrainedModel",
1034
+ "TriLMLinearForSequenceClassification",
1035
+ "TriLMLinearForQuestionAnswering",
1036
+ "TriLMLinearForTokenClassification",
1037
+ ]
Llama-2-70b-hf/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "bos_token_id": 1,
6
+ "eos_token_id": 2,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 8192,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 28672,
11
+ "max_position_embeddings": 4096,
12
+ "model_type": "llama",
13
+ "num_attention_heads": 64,
14
+ "num_hidden_layers": 80,
15
+ "num_key_value_heads": 8,
16
+ "pad_token_id": 0,
17
+ "rms_norm_eps": 1e-05,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float16",
20
+ "transformers_version": "4.31.0.dev0",
21
+ "use_cache": true,
22
+ "vocab_size": 32000
23
+ }
Llama-2-70b-hf/model.safetensors.aa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39eb601e51439d0466fda9fe5a56ebe1f269c0479e1468b3ee79eea063bc9987
3
+ size 45984460568
Llama-2-70b-hf/model.safetensors.ab ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afa5be21481bc6893aec0776cd7c3048beea3ae6aa2db20cbd85040675465804
3
+ size 45984460568
Llama-2-70b-hf/model.safetensors.ac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4e84547490aaa0a68f3c932dd0dd0b4a1b5a0f3a70ab1ca94521737ab98bc7c
3
+ size 45984460568
Llama-2-70b-hf_trirun/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TriLMLinearForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_trilmlinear.TriLMLinearConfig",
7
+ "AutoModel": "modeling_trilmlinear.TriLMLinearModel",
8
+ "AutoModelForCausalLM": "modeling_trilmlinear.TriLMLinearForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 8192,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 28672,
16
+ "max_position_embeddings": 4096,
17
+ "model_type": "TriLMLinear",
18
+ "num_attention_heads": 64,
19
+ "num_hidden_layers": 80,
20
+ "num_key_value_heads": 8,
21
+ "pad_token_id": 0,
22
+ "rms_norm_eps": 1e-05,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.31.0.dev0",
26
+ "use_cache": true,
27
+ "vocab_size": 32000
28
+ }
Llama-2-70b-hf_trirun/configuration_trilmlinear.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """TriLMLinear model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class TriLMLinearConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`TriLMLinearModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_attention_heads
128
+
129
+ ```python
130
+ >>> from transformers import LlamaModel, LlamaConfig
131
+
132
+ >>> # Initializing a LLaMA llama-7b style configuration
133
+ >>> configuration = LlamaConfig()
134
+
135
+ >>> # Initializing a model from the llama-7b style configuration
136
+ >>> model = LlamaModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "TriLMLinear"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+ # Default tensor parallel plan for base model `LlamaModel`
145
+ base_model_tp_plan = {
146
+ "layers.*.self_attn.q_proj": "colwise",
147
+ "layers.*.self_attn.k_proj": "colwise",
148
+ "layers.*.self_attn.v_proj": "colwise",
149
+ "layers.*.self_attn.o_proj": "rowwise",
150
+ "layers.*.mlp.gate_proj": "colwise",
151
+ "layers.*.mlp.up_proj": "colwise",
152
+ "layers.*.mlp.down_proj": "rowwise",
153
+ }
154
+
155
+ def __init__(
156
+ self,
157
+ vocab_size=32000,
158
+ hidden_size=4096,
159
+ intermediate_size=11008,
160
+ num_hidden_layers=32,
161
+ num_attention_heads=32,
162
+ num_key_value_heads=None,
163
+ hidden_act="silu",
164
+ max_position_embeddings=2048,
165
+ initializer_range=0.02,
166
+ rms_norm_eps=1e-6,
167
+ use_cache=True,
168
+ pad_token_id=None,
169
+ bos_token_id=1,
170
+ eos_token_id=2,
171
+ pretraining_tp=1,
172
+ tie_word_embeddings=False,
173
+ rope_theta=10000.0,
174
+ rope_scaling=None,
175
+ attention_bias=False,
176
+ attention_dropout=0.0,
177
+ mlp_bias=False,
178
+ head_dim=None,
179
+ **kwargs,
180
+ ):
181
+ self.vocab_size = vocab_size
182
+ self.max_position_embeddings = max_position_embeddings
183
+ self.hidden_size = hidden_size
184
+ self.intermediate_size = intermediate_size
185
+ self.num_hidden_layers = num_hidden_layers
186
+ self.num_attention_heads = num_attention_heads
187
+
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = rms_norm_eps
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.mlp_bias = mlp_bias
203
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
204
+ # Validate the correctness of rotary position embeddings parameters
205
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
206
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
207
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
208
+ rope_config_validation(self)
209
+
210
+ super().__init__(
211
+ pad_token_id=pad_token_id,
212
+ bos_token_id=bos_token_id,
213
+ eos_token_id=eos_token_id,
214
+ tie_word_embeddings=tie_word_embeddings,
215
+ **kwargs,
216
+ )
217
+
218
+
219
+ __all__ = ["TriLMLinearConfig"]
220
+
Llama-2-70b-hf_trirun/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb38bfe167c571952327da9671fa4e8852b17fe02e49d0f2b0d874c66f977219
3
+ size 18177560848
Llama-2-70b-hf_trirun/modeling_trilmlinear.py ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ from typing import Callable, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
28
+ from transformers.generation import GenerationMixin
29
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
30
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
39
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
40
+ from transformers.processing_utils import Unpack
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
42
+ from transformers.utils import (
43
+ LossKwargs,
44
+ add_code_sample_docstrings,
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.deprecation import deprecate_kwarg
51
+ from .configuration_trilmlinear import TriLMLinearConfig
52
+ import marlin
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+
57
+
58
+ class TriLMLinear(torch.nn.Module):
59
+ def __init__(self, in_dims, out_dims, thread_k=128, thread_n=128, groupsize=-1, sms=-1):
60
+ super(TriLMLinear, self).__init__()
61
+ self.in_dims, self.out_dims = in_dims, out_dims
62
+ self.thread_k, self.thread_n, self.groupsize, self.sms = thread_k, thread_n, groupsize, sms
63
+ packed_weight = torch.ones((in_dims//16, out_dims), dtype=torch.int32)
64
+ scales = torch.ones((1, out_dims), dtype=torch.float16)
65
+ self.register_buffer("packed_weight", packed_weight)
66
+ self.register_buffer("scales", scales)
67
+ self.workspace = torch.zeros(self.out_dims // 128 * 16, device="cuda")
68
+ def forward(self, hidden_state):
69
+ # print(A, self.name)
70
+ batch_size, seqlen, last_dim = hidden_state.shape
71
+ output = torch.zeros((batch_size * seqlen, self.out_dims), dtype=torch.float16, device=self.packed_weight.device)
72
+ marlin.mul(hidden_state.reshape(batch_size * seqlen, last_dim).contiguous(), self.packed_weight, output, self.scales,
73
+ self.workspace, self.thread_k, self.thread_n, self.sms)
74
+ return output.reshape(batch_size, seqlen, -1)
75
+
76
+
77
+ class TriLMLinearRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ TriLMLinearRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ hidden_states = hidden_states.to(torch.float32)
89
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
90
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
91
+ return self.weight * hidden_states.to(input_dtype)
92
+
93
+ def extra_repr(self):
94
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
95
+
96
+
97
+ ALL_LAYERNORM_LAYERS.append(TriLMLinearRMSNorm)
98
+
99
+
100
+ class TriLMLinearRotaryEmbedding(nn.Module):
101
+ def __init__(self, config: TriLMLinearConfig, device=None):
102
+ super().__init__()
103
+ # BC: "rope_type" was originally "type"
104
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
105
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
106
+ else:
107
+ self.rope_type = "default"
108
+ self.max_seq_len_cached = config.max_position_embeddings
109
+ self.original_max_seq_len = config.max_position_embeddings
110
+
111
+ self.config = config
112
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
113
+
114
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
115
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
116
+ self.original_inv_freq = self.inv_freq
117
+
118
+ def _dynamic_frequency_update(self, position_ids, device):
119
+ """
120
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
121
+ 1 - growing beyond the cached sequence length (allow scaling)
122
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
123
+ """
124
+ seq_len = torch.max(position_ids) + 1
125
+ if seq_len > self.max_seq_len_cached: # growth
126
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
127
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
128
+ self.max_seq_len_cached = seq_len
129
+
130
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
131
+ # This .to() is needed if the model has been moved to a device after being initialized (because
132
+ # the buffer is automatically moved, but not the original copy)
133
+ self.original_inv_freq = self.original_inv_freq.to(device)
134
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
135
+ self.max_seq_len_cached = self.original_max_seq_len
136
+
137
+ @torch.no_grad()
138
+ def forward(self, x, position_ids):
139
+ if "dynamic" in self.rope_type:
140
+ self._dynamic_frequency_update(position_ids, device=x.device)
141
+
142
+ # Core RoPE block
143
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
144
+ position_ids_expanded = position_ids[:, None, :].float()
145
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
146
+ device_type = x.device.type
147
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
148
+ with torch.autocast(device_type=device_type, enabled=False):
149
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
150
+ emb = torch.cat((freqs, freqs), dim=-1)
151
+ cos = emb.cos()
152
+ sin = emb.sin()
153
+
154
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
155
+ cos = cos * self.attention_scaling
156
+ sin = sin * self.attention_scaling
157
+
158
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
159
+
160
+
161
+ def rotate_half(x):
162
+ """Rotates half the hidden dims of the input."""
163
+ x1 = x[..., : x.shape[-1] // 2]
164
+ x2 = x[..., x.shape[-1] // 2 :]
165
+ return torch.cat((-x2, x1), dim=-1)
166
+
167
+
168
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
169
+ """Applies Rotary Position Embedding to the query and key tensors.
170
+
171
+ Args:
172
+ q (`torch.Tensor`): The query tensor.
173
+ k (`torch.Tensor`): The key tensor.
174
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
175
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
176
+ position_ids (`torch.Tensor`, *optional*):
177
+ Deprecated and unused.
178
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
179
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
180
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
181
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
182
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
183
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
184
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
185
+ Returns:
186
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
187
+ """
188
+ cos = cos.unsqueeze(unsqueeze_dim)
189
+ sin = sin.unsqueeze(unsqueeze_dim)
190
+ q_embed = (q * cos) + (rotate_half(q) * sin)
191
+ k_embed = (k * cos) + (rotate_half(k) * sin)
192
+ return q_embed, k_embed
193
+
194
+
195
+ class TriLMLinearMLP(nn.Module):
196
+ def __init__(self, config):
197
+ super().__init__()
198
+ self.config = config
199
+ self.hidden_size = config.hidden_size
200
+ self.intermediate_size = config.intermediate_size
201
+ assert config.mlp_bias == False, config.mlp_bias
202
+ self.gate_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
203
+ self.up_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
204
+ self.down_proj = TriLMLinear(self.intermediate_size, self.hidden_size)
205
+ self.act_fn = ACT2FN[config.hidden_act]
206
+
207
+ def forward(self, x):
208
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
209
+ return down_proj
210
+
211
+
212
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
213
+ """
214
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
215
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
216
+ """
217
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
218
+ if n_rep == 1:
219
+ return hidden_states
220
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
221
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
222
+
223
+
224
+ def eager_attention_forward(
225
+ module: nn.Module,
226
+ query: torch.Tensor,
227
+ key: torch.Tensor,
228
+ value: torch.Tensor,
229
+ attention_mask: Optional[torch.Tensor],
230
+ scaling: float,
231
+ dropout: float = 0.0,
232
+ **kwargs,
233
+ ):
234
+ key_states = repeat_kv(key, module.num_key_value_groups)
235
+ value_states = repeat_kv(value, module.num_key_value_groups)
236
+
237
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
238
+ if attention_mask is not None:
239
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
240
+ attn_weights = attn_weights + causal_mask
241
+
242
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
243
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
244
+ attn_output = torch.matmul(attn_weights, value_states)
245
+ attn_output = attn_output.transpose(1, 2).contiguous()
246
+
247
+ return attn_output, attn_weights
248
+
249
+
250
+ class TriLMLinearAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
254
+ super().__init__()
255
+ self.config = config
256
+ self.layer_idx = layer_idx
257
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
258
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
259
+ self.scaling = self.head_dim**-0.5
260
+ self.attention_dropout = config.attention_dropout
261
+ self.is_causal = True
262
+ assert config.attention_bias == False
263
+ self.q_proj = TriLMLinear(
264
+ config.hidden_size, config.num_attention_heads * self.head_dim#, bias=config.attention_bias
265
+ )
266
+ self.k_proj = TriLMLinear(
267
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
268
+ )
269
+ self.v_proj = TriLMLinear(
270
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
271
+ )
272
+ self.o_proj = TriLMLinear(
273
+ config.num_attention_heads * self.head_dim, config.hidden_size#, bias=config.attention_bias
274
+ )
275
+
276
+ def forward(
277
+ self,
278
+ hidden_states: torch.Tensor,
279
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
280
+ attention_mask: Optional[torch.Tensor],
281
+ past_key_value: Optional[Cache] = None,
282
+ cache_position: Optional[torch.LongTensor] = None,
283
+ **kwargs: Unpack[FlashAttentionKwargs],
284
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
285
+ input_shape = hidden_states.shape[:-1]
286
+ hidden_shape = (*input_shape, -1, self.head_dim)
287
+
288
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
289
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
290
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
291
+
292
+ cos, sin = position_embeddings
293
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
294
+
295
+ if past_key_value is not None:
296
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
297
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
298
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
299
+
300
+ attention_interface: Callable = eager_attention_forward
301
+ if self.config._attn_implementation != "eager":
302
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
303
+ logger.warning_once(
304
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
305
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
306
+ )
307
+ else:
308
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
309
+
310
+ attn_output, attn_weights = attention_interface(
311
+ self,
312
+ query_states,
313
+ key_states,
314
+ value_states,
315
+ attention_mask,
316
+ dropout=0.0 if not self.training else self.attention_dropout,
317
+ scaling=self.scaling,
318
+ **kwargs,
319
+ )
320
+
321
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
322
+ attn_output = self.o_proj(attn_output)
323
+ return attn_output, attn_weights
324
+
325
+
326
+ class TriLMLinearDecoderLayer(nn.Module):
327
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
328
+ super().__init__()
329
+ self.hidden_size = config.hidden_size
330
+
331
+ self.self_attn = TriLMLinearAttention(config=config, layer_idx=layer_idx)
332
+
333
+ self.mlp = TriLMLinearMLP(config)
334
+ self.input_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
335
+ self.post_attention_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
336
+
337
+ def forward(
338
+ self,
339
+ hidden_states: torch.Tensor,
340
+ attention_mask: Optional[torch.Tensor] = None,
341
+ position_ids: Optional[torch.LongTensor] = None,
342
+ past_key_value: Optional[Cache] = None,
343
+ output_attentions: Optional[bool] = False,
344
+ use_cache: Optional[bool] = False,
345
+ cache_position: Optional[torch.LongTensor] = None,
346
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
347
+ **kwargs: Unpack[FlashAttentionKwargs],
348
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
349
+ residual = hidden_states
350
+
351
+ hidden_states = self.input_layernorm(hidden_states)
352
+
353
+ # Self Attention
354
+ hidden_states, self_attn_weights = self.self_attn(
355
+ hidden_states=hidden_states,
356
+ attention_mask=attention_mask,
357
+ position_ids=position_ids,
358
+ past_key_value=past_key_value,
359
+ output_attentions=output_attentions,
360
+ use_cache=use_cache,
361
+ cache_position=cache_position,
362
+ position_embeddings=position_embeddings,
363
+ **kwargs,
364
+ )
365
+ hidden_states = residual + hidden_states
366
+
367
+ # Fully Connected
368
+ residual = hidden_states
369
+ hidden_states = self.post_attention_layernorm(hidden_states)
370
+ hidden_states = self.mlp(hidden_states)
371
+ hidden_states = residual + hidden_states
372
+
373
+ outputs = (hidden_states,)
374
+ if output_attentions:
375
+ outputs += (self_attn_weights,)
376
+
377
+ return outputs
378
+
379
+
380
+ class TriLMLinearPreTrainedModel(PreTrainedModel):
381
+ config_class = TriLMLinearConfig
382
+ base_model_prefix = "model"
383
+ supports_gradient_checkpointing = True
384
+ _no_split_modules = ["TriLMLinearDecoderLayer"]
385
+ _skip_keys_device_placement = ["past_key_values"]
386
+ _supports_flash_attn_2 = True
387
+ _supports_sdpa = True
388
+ _supports_flex_attn = True
389
+ _supports_cache_class = True
390
+ _supports_quantized_cache = True
391
+ _supports_static_cache = True
392
+ _supports_attention_backend = True
393
+
394
+ def _init_weights(self, module):
395
+ std = self.config.initializer_range
396
+ if isinstance(module, nn.Linear):
397
+ module.weight.data.normal_(mean=0.0, std=std)
398
+ if module.bias is not None:
399
+ module.bias.data.zero_()
400
+ elif isinstance(module, nn.Embedding):
401
+ module.weight.data.normal_(mean=0.0, std=std)
402
+ if module.padding_idx is not None:
403
+ module.weight.data[module.padding_idx].zero_()
404
+
405
+
406
+
407
+
408
+ class TriLMLinearModel(TriLMLinearPreTrainedModel):
409
+ """
410
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TriLMLinearDecoderLayer`]
411
+
412
+ Args:
413
+ config: TriLMLinearConfig
414
+ """
415
+
416
+ def __init__(self, config: TriLMLinearConfig):
417
+ super().__init__(config)
418
+ self.padding_idx = config.pad_token_id
419
+ self.vocab_size = config.vocab_size
420
+
421
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
422
+ self.layers = nn.ModuleList(
423
+ [TriLMLinearDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
424
+ )
425
+ self.norm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
426
+ self.rotary_emb = TriLMLinearRotaryEmbedding(config=config)
427
+ self.gradient_checkpointing = False
428
+
429
+ # Initialize weights and apply final processing
430
+ self.post_init()
431
+
432
+ def get_input_embeddings(self):
433
+ return self.embed_tokens
434
+
435
+ def set_input_embeddings(self, value):
436
+ self.embed_tokens = value
437
+
438
+ def forward(
439
+ self,
440
+ input_ids: torch.LongTensor = None,
441
+ attention_mask: Optional[torch.Tensor] = None,
442
+ position_ids: Optional[torch.LongTensor] = None,
443
+ past_key_values: Optional[Cache] = None,
444
+ inputs_embeds: Optional[torch.FloatTensor] = None,
445
+ use_cache: Optional[bool] = None,
446
+ output_attentions: Optional[bool] = None,
447
+ output_hidden_states: Optional[bool] = None,
448
+ return_dict: Optional[bool] = None,
449
+ cache_position: Optional[torch.LongTensor] = None,
450
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
451
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
452
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
453
+ output_hidden_states = (
454
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
455
+ )
456
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
457
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
458
+
459
+ if (input_ids is None) ^ (inputs_embeds is not None):
460
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
461
+
462
+ if self.gradient_checkpointing and self.training and use_cache:
463
+ logger.warning_once(
464
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
465
+ )
466
+ use_cache = False
467
+
468
+ if inputs_embeds is None:
469
+ inputs_embeds = self.embed_tokens(input_ids)
470
+
471
+ if use_cache and past_key_values is None:
472
+ past_key_values = DynamicCache()
473
+
474
+ if cache_position is None:
475
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
476
+ cache_position = torch.arange(
477
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
478
+ )
479
+
480
+ if position_ids is None:
481
+ position_ids = cache_position.unsqueeze(0)
482
+
483
+ causal_mask = self._update_causal_mask(
484
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
485
+ )
486
+
487
+ hidden_states = inputs_embeds
488
+
489
+ # create position embeddings to be shared across the decoder layers
490
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
491
+
492
+ # decoder layers
493
+ all_hidden_states = () if output_hidden_states else None
494
+ all_self_attns = () if output_attentions else None
495
+
496
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
497
+ if output_hidden_states:
498
+ all_hidden_states += (hidden_states,)
499
+
500
+ if self.gradient_checkpointing and self.training:
501
+ layer_outputs = self._gradient_checkpointing_func(
502
+ decoder_layer.__call__,
503
+ hidden_states,
504
+ causal_mask,
505
+ position_ids,
506
+ past_key_values,
507
+ output_attentions,
508
+ use_cache,
509
+ cache_position,
510
+ position_embeddings,
511
+ )
512
+ else:
513
+ layer_outputs = decoder_layer(
514
+ hidden_states,
515
+ attention_mask=causal_mask,
516
+ position_ids=position_ids,
517
+ past_key_value=past_key_values,
518
+ output_attentions=output_attentions,
519
+ use_cache=use_cache,
520
+ cache_position=cache_position,
521
+ position_embeddings=position_embeddings,
522
+ **flash_attn_kwargs,
523
+ )
524
+
525
+ hidden_states = layer_outputs[0]
526
+
527
+ if output_attentions:
528
+ all_self_attns += (layer_outputs[1],)
529
+
530
+ hidden_states = self.norm(hidden_states)
531
+
532
+ # add hidden states from the last decoder layer
533
+ if output_hidden_states:
534
+ all_hidden_states += (hidden_states,)
535
+
536
+ output = BaseModelOutputWithPast(
537
+ last_hidden_state=hidden_states,
538
+ past_key_values=past_key_values if use_cache else None,
539
+ hidden_states=all_hidden_states,
540
+ attentions=all_self_attns,
541
+ )
542
+ return output if return_dict else output.to_tuple()
543
+
544
+ def _update_causal_mask(
545
+ self,
546
+ attention_mask: torch.Tensor,
547
+ input_tensor: torch.Tensor,
548
+ cache_position: torch.Tensor,
549
+ past_key_values: Cache,
550
+ output_attentions: bool,
551
+ ):
552
+ if self.config._attn_implementation == "flash_attention_2":
553
+ if attention_mask is not None and (attention_mask == 0.0).any():
554
+ return attention_mask
555
+ return None
556
+
557
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
558
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
559
+ # to infer the attention mask.
560
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
561
+ using_static_cache = isinstance(past_key_values, StaticCache)
562
+
563
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
564
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
565
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
566
+ attention_mask,
567
+ inputs_embeds=input_tensor,
568
+ past_key_values_length=past_seen_tokens,
569
+ is_training=self.training,
570
+ ):
571
+ return None
572
+
573
+ dtype, device = input_tensor.dtype, input_tensor.device
574
+ sequence_length = input_tensor.shape[1]
575
+ if using_static_cache:
576
+ target_length = past_key_values.get_max_cache_shape()
577
+ else:
578
+ target_length = (
579
+ attention_mask.shape[-1]
580
+ if isinstance(attention_mask, torch.Tensor)
581
+ else past_seen_tokens + sequence_length + 1
582
+ )
583
+
584
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
585
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
586
+ attention_mask,
587
+ sequence_length=sequence_length,
588
+ target_length=target_length,
589
+ dtype=dtype,
590
+ device=device,
591
+ cache_position=cache_position,
592
+ batch_size=input_tensor.shape[0],
593
+ )
594
+
595
+ if (
596
+ self.config._attn_implementation == "sdpa"
597
+ and attention_mask is not None
598
+ and attention_mask.device.type == "cuda"
599
+ and not output_attentions
600
+ ):
601
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
602
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
603
+ # Details: https://github.com/pytorch/pytorch/issues/110213
604
+ min_dtype = torch.finfo(dtype).min
605
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
606
+
607
+ return causal_mask
608
+
609
+ @staticmethod
610
+ def _prepare_4d_causal_attention_mask_with_cache_position(
611
+ attention_mask: torch.Tensor,
612
+ sequence_length: int,
613
+ target_length: int,
614
+ dtype: torch.dtype,
615
+ device: torch.device,
616
+ cache_position: torch.Tensor,
617
+ batch_size: int,
618
+ **kwargs,
619
+ ):
620
+ """
621
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
622
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
623
+
624
+ Args:
625
+ attention_mask (`torch.Tensor`):
626
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
627
+ `(batch_size, 1, query_length, key_value_length)`.
628
+ sequence_length (`int`):
629
+ The sequence length being processed.
630
+ target_length (`int`):
631
+ The target length: when generating with static cache, the mask should be as long as the static cache,
632
+ to account for the 0 padding, the part of the cache that is not filled yet.
633
+ dtype (`torch.dtype`):
634
+ The dtype to use for the 4D attention mask.
635
+ device (`torch.device`):
636
+ The device to plcae the 4D attention mask on.
637
+ cache_position (`torch.Tensor`):
638
+ Indices depicting the position of the input sequence tokens in the sequence.
639
+ batch_size (`torch.Tensor`):
640
+ Batch size.
641
+ """
642
+ if attention_mask is not None and attention_mask.dim() == 4:
643
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
644
+ causal_mask = attention_mask
645
+ else:
646
+ min_dtype = torch.finfo(dtype).min
647
+ causal_mask = torch.full(
648
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
649
+ )
650
+ if sequence_length != 1:
651
+ causal_mask = torch.triu(causal_mask, diagonal=1)
652
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
653
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
654
+ if attention_mask is not None:
655
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
656
+ mask_length = attention_mask.shape[-1]
657
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
658
+ padding_mask = padding_mask == 0
659
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
660
+ padding_mask, min_dtype
661
+ )
662
+
663
+ return causal_mask
664
+
665
+
666
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
667
+
668
+
669
+ class TriLMLinearForCausalLM(TriLMLinearPreTrainedModel, GenerationMixin):
670
+ _tied_weights_keys = ["lm_head.weight"]
671
+ _tp_plan = {"lm_head": "colwise_rep"}
672
+
673
+ def __init__(self, config):
674
+ super().__init__(config)
675
+ self.model = TriLMLinearModel(config)
676
+ self.vocab_size = config.vocab_size
677
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
678
+
679
+ # Initialize weights and apply final processing
680
+ self.post_init()
681
+
682
+ def get_input_embeddings(self):
683
+ return self.model.embed_tokens
684
+
685
+ def set_input_embeddings(self, value):
686
+ self.model.embed_tokens = value
687
+
688
+ def get_output_embeddings(self):
689
+ return self.lm_head
690
+
691
+ def set_output_embeddings(self, new_embeddings):
692
+ self.lm_head = new_embeddings
693
+
694
+ def set_decoder(self, decoder):
695
+ self.model = decoder
696
+
697
+ def get_decoder(self):
698
+ return self.model
699
+
700
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
701
+ def forward(
702
+ self,
703
+ input_ids: torch.LongTensor = None,
704
+ attention_mask: Optional[torch.Tensor] = None,
705
+ position_ids: Optional[torch.LongTensor] = None,
706
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
707
+ inputs_embeds: Optional[torch.FloatTensor] = None,
708
+ labels: Optional[torch.LongTensor] = None,
709
+ use_cache: Optional[bool] = None,
710
+ output_attentions: Optional[bool] = None,
711
+ output_hidden_states: Optional[bool] = None,
712
+ return_dict: Optional[bool] = None,
713
+ cache_position: Optional[torch.LongTensor] = None,
714
+ logits_to_keep: Union[int, torch.Tensor] = 0,
715
+ **kwargs: Unpack[KwargsForCausalLM],
716
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
717
+ r"""
718
+ Args:
719
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
720
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
721
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
722
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
723
+
724
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
725
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
726
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
727
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
728
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
729
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
730
+
731
+ Returns:
732
+
733
+ Example:
734
+
735
+ ```python
736
+ >>> from transformers import AutoTokenizer, TriLMLinearForCausalLM
737
+
738
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
739
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
740
+
741
+ >>> # Generate
742
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
743
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
744
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
745
+ ```"""
746
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
747
+ output_hidden_states = (
748
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
749
+ )
750
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
751
+
752
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
753
+ outputs = self.model(
754
+ input_ids=input_ids,
755
+ attention_mask=attention_mask,
756
+ position_ids=position_ids,
757
+ past_key_values=past_key_values,
758
+ inputs_embeds=inputs_embeds,
759
+ use_cache=use_cache,
760
+ output_attentions=output_attentions,
761
+ output_hidden_states=output_hidden_states,
762
+ return_dict=return_dict,
763
+ cache_position=cache_position,
764
+ **kwargs,
765
+ )
766
+
767
+ hidden_states = outputs[0]
768
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
769
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
770
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
771
+
772
+ loss = None
773
+ if labels is not None:
774
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
775
+
776
+ if not return_dict:
777
+ output = (logits,) + outputs[1:]
778
+ return (loss,) + output if loss is not None else output
779
+
780
+ return CausalLMOutputWithPast(
781
+ loss=loss,
782
+ logits=logits,
783
+ past_key_values=outputs.past_key_values,
784
+ hidden_states=outputs.hidden_states,
785
+ attentions=outputs.attentions,
786
+ )
787
+
788
+
789
+ class TriLMLinearForSequenceClassification(TriLMLinearPreTrainedModel):
790
+ def __init__(self, config):
791
+ super().__init__(config)
792
+ self.num_labels = config.num_labels
793
+ self.model = TriLMLinearModel(config)
794
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
795
+
796
+ # Initialize weights and apply final processing
797
+ self.post_init()
798
+
799
+ def get_input_embeddings(self):
800
+ return self.model.embed_tokens
801
+
802
+ def set_input_embeddings(self, value):
803
+ self.model.embed_tokens = value
804
+
805
+ def forward(
806
+ self,
807
+ input_ids: Optional[torch.LongTensor] = None,
808
+ attention_mask: Optional[torch.Tensor] = None,
809
+ position_ids: Optional[torch.LongTensor] = None,
810
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
811
+ inputs_embeds: Optional[torch.FloatTensor] = None,
812
+ labels: Optional[torch.LongTensor] = None,
813
+ use_cache: Optional[bool] = None,
814
+ output_attentions: Optional[bool] = None,
815
+ output_hidden_states: Optional[bool] = None,
816
+ return_dict: Optional[bool] = None,
817
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
818
+ r"""
819
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
820
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
821
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
822
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
823
+ """
824
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
825
+
826
+ transformer_outputs = self.model(
827
+ input_ids,
828
+ attention_mask=attention_mask,
829
+ position_ids=position_ids,
830
+ past_key_values=past_key_values,
831
+ inputs_embeds=inputs_embeds,
832
+ use_cache=use_cache,
833
+ output_attentions=output_attentions,
834
+ output_hidden_states=output_hidden_states,
835
+ return_dict=return_dict,
836
+ )
837
+ hidden_states = transformer_outputs[0]
838
+ logits = self.score(hidden_states)
839
+
840
+ if input_ids is not None:
841
+ batch_size = input_ids.shape[0]
842
+ else:
843
+ batch_size = inputs_embeds.shape[0]
844
+
845
+ if self.config.pad_token_id is None and batch_size != 1:
846
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
847
+ if self.config.pad_token_id is None:
848
+ sequence_lengths = -1
849
+ else:
850
+ if input_ids is not None:
851
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
852
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
853
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
854
+ sequence_lengths = sequence_lengths.to(logits.device)
855
+ else:
856
+ sequence_lengths = -1
857
+
858
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
859
+
860
+ loss = None
861
+ if labels is not None:
862
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
863
+
864
+ if not return_dict:
865
+ output = (pooled_logits,) + transformer_outputs[1:]
866
+ return ((loss,) + output) if loss is not None else output
867
+
868
+ return SequenceClassifierOutputWithPast(
869
+ loss=loss,
870
+ logits=pooled_logits,
871
+ past_key_values=transformer_outputs.past_key_values,
872
+ hidden_states=transformer_outputs.hidden_states,
873
+ attentions=transformer_outputs.attentions,
874
+ )
875
+
876
+
877
+ class TriLMLinearForQuestionAnswering(TriLMLinearPreTrainedModel):
878
+ base_model_prefix = "transformer"
879
+
880
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TriLMLinear
881
+ def __init__(self, config):
882
+ super().__init__(config)
883
+ self.transformer = TriLMLinearModel(config)
884
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
885
+
886
+ # Initialize weights and apply final processing
887
+ self.post_init()
888
+
889
+ def get_input_embeddings(self):
890
+ return self.transformer.embed_tokens
891
+
892
+ def set_input_embeddings(self, value):
893
+ self.transformer.embed_tokens = value
894
+
895
+ def forward(
896
+ self,
897
+ input_ids: Optional[torch.LongTensor] = None,
898
+ attention_mask: Optional[torch.FloatTensor] = None,
899
+ position_ids: Optional[torch.LongTensor] = None,
900
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
901
+ inputs_embeds: Optional[torch.FloatTensor] = None,
902
+ start_positions: Optional[torch.LongTensor] = None,
903
+ end_positions: Optional[torch.LongTensor] = None,
904
+ output_attentions: Optional[bool] = None,
905
+ output_hidden_states: Optional[bool] = None,
906
+ return_dict: Optional[bool] = None,
907
+ **kwargs,
908
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
909
+ r"""
910
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
911
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
912
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
913
+ are not taken into account for computing the loss.
914
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
915
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
916
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
917
+ are not taken into account for computing the loss.
918
+ """
919
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
920
+
921
+ outputs = self.transformer(
922
+ input_ids,
923
+ attention_mask=attention_mask,
924
+ position_ids=position_ids,
925
+ past_key_values=past_key_values,
926
+ inputs_embeds=inputs_embeds,
927
+ output_attentions=output_attentions,
928
+ output_hidden_states=output_hidden_states,
929
+ return_dict=return_dict,
930
+ )
931
+
932
+ sequence_output = outputs[0]
933
+
934
+ logits = self.qa_outputs(sequence_output)
935
+ start_logits, end_logits = logits.split(1, dim=-1)
936
+ start_logits = start_logits.squeeze(-1).contiguous()
937
+ end_logits = end_logits.squeeze(-1).contiguous()
938
+
939
+ loss = None
940
+ if start_positions is not None and end_positions is not None:
941
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
942
+
943
+ if not return_dict:
944
+ output = (start_logits, end_logits) + outputs[2:]
945
+ return ((loss,) + output) if loss is not None else output
946
+
947
+ return QuestionAnsweringModelOutput(
948
+ loss=loss,
949
+ start_logits=start_logits,
950
+ end_logits=end_logits,
951
+ hidden_states=outputs.hidden_states,
952
+ attentions=outputs.attentions,
953
+ )
954
+
955
+ class TriLMLinearForTokenClassification(TriLMLinearPreTrainedModel):
956
+ def __init__(self, config):
957
+ super().__init__(config)
958
+ self.num_labels = config.num_labels
959
+ self.model = TriLMLinearModel(config)
960
+ if getattr(config, "classifier_dropout", None) is not None:
961
+ classifier_dropout = config.classifier_dropout
962
+ elif getattr(config, "hidden_dropout", None) is not None:
963
+ classifier_dropout = config.hidden_dropout
964
+ else:
965
+ classifier_dropout = 0.1
966
+ self.dropout = nn.Dropout(classifier_dropout)
967
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
968
+
969
+ # Initialize weights and apply final processing
970
+ self.post_init()
971
+
972
+ def get_input_embeddings(self):
973
+ return self.model.embed_tokens
974
+
975
+ def set_input_embeddings(self, value):
976
+ self.model.embed_tokens = value
977
+
978
+ def forward(
979
+ self,
980
+ input_ids: Optional[torch.LongTensor] = None,
981
+ attention_mask: Optional[torch.Tensor] = None,
982
+ position_ids: Optional[torch.LongTensor] = None,
983
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
984
+ inputs_embeds: Optional[torch.FloatTensor] = None,
985
+ labels: Optional[torch.LongTensor] = None,
986
+ use_cache: Optional[bool] = None,
987
+ output_attentions: Optional[bool] = None,
988
+ output_hidden_states: Optional[bool] = None,
989
+ return_dict: Optional[bool] = None,
990
+ ) -> Union[Tuple, TokenClassifierOutput]:
991
+ r"""
992
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
993
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
994
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
995
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
996
+ """
997
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
998
+
999
+ outputs = self.model(
1000
+ input_ids,
1001
+ attention_mask=attention_mask,
1002
+ position_ids=position_ids,
1003
+ past_key_values=past_key_values,
1004
+ inputs_embeds=inputs_embeds,
1005
+ use_cache=use_cache,
1006
+ output_attentions=output_attentions,
1007
+ output_hidden_states=output_hidden_states,
1008
+ return_dict=return_dict,
1009
+ )
1010
+ sequence_output = outputs[0]
1011
+ sequence_output = self.dropout(sequence_output)
1012
+ logits = self.score(sequence_output)
1013
+
1014
+ loss = None
1015
+ if labels is not None:
1016
+ loss = self.loss_function(logits, labels, self.config)
1017
+
1018
+ if not return_dict:
1019
+ output = (logits,) + outputs[2:]
1020
+ return ((loss,) + output) if loss is not None else output
1021
+
1022
+ return TokenClassifierOutput(
1023
+ loss=loss,
1024
+ logits=logits,
1025
+ hidden_states=outputs.hidden_states,
1026
+ attentions=outputs.attentions,
1027
+ )
1028
+
1029
+
1030
+ __all__ = [
1031
+ "TriLMLinearForCausalLM",
1032
+ "TriLMLinearModel",
1033
+ "TriLMLinearPreTrainedModel",
1034
+ "TriLMLinearForSequenceClassification",
1035
+ "TriLMLinearForQuestionAnswering",
1036
+ "TriLMLinearForTokenClassification",
1037
+ ]
Llama-2-7b-hf/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "bos_token_id": 1,
6
+ "eos_token_id": 2,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 4096,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 11008,
11
+ "max_position_embeddings": 4096,
12
+ "model_type": "llama",
13
+ "num_attention_heads": 32,
14
+ "num_hidden_layers": 32,
15
+ "num_key_value_heads": 32,
16
+ "pad_token_id": 0,
17
+ "pretraining_tp": 1,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "float16",
22
+ "transformers_version": "4.31.0.dev0",
23
+ "use_cache": true,
24
+ "vocab_size": 32000
25
+ }
Llama-2-7b-hf/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49c4fba6ccde3f94e2bdb9ce35209d6e01a4a6f213efc177cc10a262523f48d9
3
+ size 13476864912
Llama-2-7b-hf_trirun/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TriLMLinearForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_trilmlinear.TriLMLinearConfig",
7
+ "AutoModel": "modeling_trilmlinear.TriLMLinearModel",
8
+ "AutoModelForCausalLM": "modeling_trilmlinear.TriLMLinearForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_position_embeddings": 4096,
17
+ "model_type": "TriLMLinear",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 32,
21
+ "pad_token_id": 0,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "float16",
27
+ "transformers_version": "4.31.0.dev0",
28
+ "use_cache": true,
29
+ "vocab_size": 32000
30
+ }
Llama-2-7b-hf_trirun/configuration_trilmlinear.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """TriLMLinear model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class TriLMLinearConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`TriLMLinearModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_attention_heads
128
+
129
+ ```python
130
+ >>> from transformers import LlamaModel, LlamaConfig
131
+
132
+ >>> # Initializing a LLaMA llama-7b style configuration
133
+ >>> configuration = LlamaConfig()
134
+
135
+ >>> # Initializing a model from the llama-7b style configuration
136
+ >>> model = LlamaModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "TriLMLinear"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+ # Default tensor parallel plan for base model `LlamaModel`
145
+ base_model_tp_plan = {
146
+ "layers.*.self_attn.q_proj": "colwise",
147
+ "layers.*.self_attn.k_proj": "colwise",
148
+ "layers.*.self_attn.v_proj": "colwise",
149
+ "layers.*.self_attn.o_proj": "rowwise",
150
+ "layers.*.mlp.gate_proj": "colwise",
151
+ "layers.*.mlp.up_proj": "colwise",
152
+ "layers.*.mlp.down_proj": "rowwise",
153
+ }
154
+
155
+ def __init__(
156
+ self,
157
+ vocab_size=32000,
158
+ hidden_size=4096,
159
+ intermediate_size=11008,
160
+ num_hidden_layers=32,
161
+ num_attention_heads=32,
162
+ num_key_value_heads=None,
163
+ hidden_act="silu",
164
+ max_position_embeddings=2048,
165
+ initializer_range=0.02,
166
+ rms_norm_eps=1e-6,
167
+ use_cache=True,
168
+ pad_token_id=None,
169
+ bos_token_id=1,
170
+ eos_token_id=2,
171
+ pretraining_tp=1,
172
+ tie_word_embeddings=False,
173
+ rope_theta=10000.0,
174
+ rope_scaling=None,
175
+ attention_bias=False,
176
+ attention_dropout=0.0,
177
+ mlp_bias=False,
178
+ head_dim=None,
179
+ **kwargs,
180
+ ):
181
+ self.vocab_size = vocab_size
182
+ self.max_position_embeddings = max_position_embeddings
183
+ self.hidden_size = hidden_size
184
+ self.intermediate_size = intermediate_size
185
+ self.num_hidden_layers = num_hidden_layers
186
+ self.num_attention_heads = num_attention_heads
187
+
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = rms_norm_eps
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.mlp_bias = mlp_bias
203
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
204
+ # Validate the correctness of rotary position embeddings parameters
205
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
206
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
207
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
208
+ rope_config_validation(self)
209
+
210
+ super().__init__(
211
+ pad_token_id=pad_token_id,
212
+ bos_token_id=bos_token_id,
213
+ eos_token_id=eos_token_id,
214
+ tie_word_embeddings=tie_word_embeddings,
215
+ **kwargs,
216
+ )
217
+
218
+
219
+ __all__ = ["TriLMLinearConfig"]
220
+
Llama-2-7b-hf_trirun/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a21450382a2589ca67a2b4254239113289b3c35de0e6e5d7bcdf71993f7576a0
3
+ size 2146601304
Llama-2-7b-hf_trirun/modeling_trilmlinear.py ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ from typing import Callable, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
28
+ from transformers.generation import GenerationMixin
29
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
30
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
39
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
40
+ from transformers.processing_utils import Unpack
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
42
+ from transformers.utils import (
43
+ LossKwargs,
44
+ add_code_sample_docstrings,
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.deprecation import deprecate_kwarg
51
+ from .configuration_trilmlinear import TriLMLinearConfig
52
+ import marlin
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+
57
+
58
+ class TriLMLinear(torch.nn.Module):
59
+ def __init__(self, in_dims, out_dims, thread_k=128, thread_n=128, groupsize=-1, sms=-1):
60
+ super(TriLMLinear, self).__init__()
61
+ self.in_dims, self.out_dims = in_dims, out_dims
62
+ self.thread_k, self.thread_n, self.groupsize, self.sms = thread_k, thread_n, groupsize, sms
63
+ packed_weight = torch.ones((in_dims//16, out_dims), dtype=torch.int32)
64
+ scales = torch.ones((1, out_dims), dtype=torch.float16)
65
+ self.register_buffer("packed_weight", packed_weight)
66
+ self.register_buffer("scales", scales)
67
+ self.workspace = torch.zeros(self.out_dims // 128 * 16, device="cuda")
68
+ def forward(self, hidden_state):
69
+ # print(A, self.name)
70
+ batch_size, seqlen, last_dim = hidden_state.shape
71
+ output = torch.zeros((batch_size * seqlen, self.out_dims), dtype=torch.float16, device=self.packed_weight.device)
72
+ marlin.mul(hidden_state.reshape(batch_size * seqlen, last_dim).contiguous(), self.packed_weight, output, self.scales,
73
+ self.workspace, self.thread_k, self.thread_n, self.sms)
74
+ return output.reshape(batch_size, seqlen, -1)
75
+
76
+
77
+ class TriLMLinearRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ TriLMLinearRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ hidden_states = hidden_states.to(torch.float32)
89
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
90
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
91
+ return self.weight * hidden_states.to(input_dtype)
92
+
93
+ def extra_repr(self):
94
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
95
+
96
+
97
+ ALL_LAYERNORM_LAYERS.append(TriLMLinearRMSNorm)
98
+
99
+
100
+ class TriLMLinearRotaryEmbedding(nn.Module):
101
+ def __init__(self, config: TriLMLinearConfig, device=None):
102
+ super().__init__()
103
+ # BC: "rope_type" was originally "type"
104
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
105
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
106
+ else:
107
+ self.rope_type = "default"
108
+ self.max_seq_len_cached = config.max_position_embeddings
109
+ self.original_max_seq_len = config.max_position_embeddings
110
+
111
+ self.config = config
112
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
113
+
114
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
115
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
116
+ self.original_inv_freq = self.inv_freq
117
+
118
+ def _dynamic_frequency_update(self, position_ids, device):
119
+ """
120
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
121
+ 1 - growing beyond the cached sequence length (allow scaling)
122
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
123
+ """
124
+ seq_len = torch.max(position_ids) + 1
125
+ if seq_len > self.max_seq_len_cached: # growth
126
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
127
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
128
+ self.max_seq_len_cached = seq_len
129
+
130
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
131
+ # This .to() is needed if the model has been moved to a device after being initialized (because
132
+ # the buffer is automatically moved, but not the original copy)
133
+ self.original_inv_freq = self.original_inv_freq.to(device)
134
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
135
+ self.max_seq_len_cached = self.original_max_seq_len
136
+
137
+ @torch.no_grad()
138
+ def forward(self, x, position_ids):
139
+ if "dynamic" in self.rope_type:
140
+ self._dynamic_frequency_update(position_ids, device=x.device)
141
+
142
+ # Core RoPE block
143
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
144
+ position_ids_expanded = position_ids[:, None, :].float()
145
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
146
+ device_type = x.device.type
147
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
148
+ with torch.autocast(device_type=device_type, enabled=False):
149
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
150
+ emb = torch.cat((freqs, freqs), dim=-1)
151
+ cos = emb.cos()
152
+ sin = emb.sin()
153
+
154
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
155
+ cos = cos * self.attention_scaling
156
+ sin = sin * self.attention_scaling
157
+
158
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
159
+
160
+
161
+ def rotate_half(x):
162
+ """Rotates half the hidden dims of the input."""
163
+ x1 = x[..., : x.shape[-1] // 2]
164
+ x2 = x[..., x.shape[-1] // 2 :]
165
+ return torch.cat((-x2, x1), dim=-1)
166
+
167
+
168
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
169
+ """Applies Rotary Position Embedding to the query and key tensors.
170
+
171
+ Args:
172
+ q (`torch.Tensor`): The query tensor.
173
+ k (`torch.Tensor`): The key tensor.
174
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
175
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
176
+ position_ids (`torch.Tensor`, *optional*):
177
+ Deprecated and unused.
178
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
179
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
180
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
181
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
182
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
183
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
184
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
185
+ Returns:
186
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
187
+ """
188
+ cos = cos.unsqueeze(unsqueeze_dim)
189
+ sin = sin.unsqueeze(unsqueeze_dim)
190
+ q_embed = (q * cos) + (rotate_half(q) * sin)
191
+ k_embed = (k * cos) + (rotate_half(k) * sin)
192
+ return q_embed, k_embed
193
+
194
+
195
+ class TriLMLinearMLP(nn.Module):
196
+ def __init__(self, config):
197
+ super().__init__()
198
+ self.config = config
199
+ self.hidden_size = config.hidden_size
200
+ self.intermediate_size = config.intermediate_size
201
+ assert config.mlp_bias == False, config.mlp_bias
202
+ self.gate_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
203
+ self.up_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
204
+ self.down_proj = TriLMLinear(self.intermediate_size, self.hidden_size)
205
+ self.act_fn = ACT2FN[config.hidden_act]
206
+
207
+ def forward(self, x):
208
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
209
+ return down_proj
210
+
211
+
212
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
213
+ """
214
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
215
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
216
+ """
217
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
218
+ if n_rep == 1:
219
+ return hidden_states
220
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
221
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
222
+
223
+
224
+ def eager_attention_forward(
225
+ module: nn.Module,
226
+ query: torch.Tensor,
227
+ key: torch.Tensor,
228
+ value: torch.Tensor,
229
+ attention_mask: Optional[torch.Tensor],
230
+ scaling: float,
231
+ dropout: float = 0.0,
232
+ **kwargs,
233
+ ):
234
+ key_states = repeat_kv(key, module.num_key_value_groups)
235
+ value_states = repeat_kv(value, module.num_key_value_groups)
236
+
237
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
238
+ if attention_mask is not None:
239
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
240
+ attn_weights = attn_weights + causal_mask
241
+
242
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
243
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
244
+ attn_output = torch.matmul(attn_weights, value_states)
245
+ attn_output = attn_output.transpose(1, 2).contiguous()
246
+
247
+ return attn_output, attn_weights
248
+
249
+
250
+ class TriLMLinearAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
254
+ super().__init__()
255
+ self.config = config
256
+ self.layer_idx = layer_idx
257
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
258
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
259
+ self.scaling = self.head_dim**-0.5
260
+ self.attention_dropout = config.attention_dropout
261
+ self.is_causal = True
262
+ assert config.attention_bias == False
263
+ self.q_proj = TriLMLinear(
264
+ config.hidden_size, config.num_attention_heads * self.head_dim#, bias=config.attention_bias
265
+ )
266
+ self.k_proj = TriLMLinear(
267
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
268
+ )
269
+ self.v_proj = TriLMLinear(
270
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
271
+ )
272
+ self.o_proj = TriLMLinear(
273
+ config.num_attention_heads * self.head_dim, config.hidden_size#, bias=config.attention_bias
274
+ )
275
+
276
+ def forward(
277
+ self,
278
+ hidden_states: torch.Tensor,
279
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
280
+ attention_mask: Optional[torch.Tensor],
281
+ past_key_value: Optional[Cache] = None,
282
+ cache_position: Optional[torch.LongTensor] = None,
283
+ **kwargs: Unpack[FlashAttentionKwargs],
284
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
285
+ input_shape = hidden_states.shape[:-1]
286
+ hidden_shape = (*input_shape, -1, self.head_dim)
287
+
288
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
289
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
290
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
291
+
292
+ cos, sin = position_embeddings
293
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
294
+
295
+ if past_key_value is not None:
296
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
297
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
298
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
299
+
300
+ attention_interface: Callable = eager_attention_forward
301
+ if self.config._attn_implementation != "eager":
302
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
303
+ logger.warning_once(
304
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
305
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
306
+ )
307
+ else:
308
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
309
+
310
+ attn_output, attn_weights = attention_interface(
311
+ self,
312
+ query_states,
313
+ key_states,
314
+ value_states,
315
+ attention_mask,
316
+ dropout=0.0 if not self.training else self.attention_dropout,
317
+ scaling=self.scaling,
318
+ **kwargs,
319
+ )
320
+
321
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
322
+ attn_output = self.o_proj(attn_output)
323
+ return attn_output, attn_weights
324
+
325
+
326
+ class TriLMLinearDecoderLayer(nn.Module):
327
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
328
+ super().__init__()
329
+ self.hidden_size = config.hidden_size
330
+
331
+ self.self_attn = TriLMLinearAttention(config=config, layer_idx=layer_idx)
332
+
333
+ self.mlp = TriLMLinearMLP(config)
334
+ self.input_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
335
+ self.post_attention_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
336
+
337
+ def forward(
338
+ self,
339
+ hidden_states: torch.Tensor,
340
+ attention_mask: Optional[torch.Tensor] = None,
341
+ position_ids: Optional[torch.LongTensor] = None,
342
+ past_key_value: Optional[Cache] = None,
343
+ output_attentions: Optional[bool] = False,
344
+ use_cache: Optional[bool] = False,
345
+ cache_position: Optional[torch.LongTensor] = None,
346
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
347
+ **kwargs: Unpack[FlashAttentionKwargs],
348
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
349
+ residual = hidden_states
350
+
351
+ hidden_states = self.input_layernorm(hidden_states)
352
+
353
+ # Self Attention
354
+ hidden_states, self_attn_weights = self.self_attn(
355
+ hidden_states=hidden_states,
356
+ attention_mask=attention_mask,
357
+ position_ids=position_ids,
358
+ past_key_value=past_key_value,
359
+ output_attentions=output_attentions,
360
+ use_cache=use_cache,
361
+ cache_position=cache_position,
362
+ position_embeddings=position_embeddings,
363
+ **kwargs,
364
+ )
365
+ hidden_states = residual + hidden_states
366
+
367
+ # Fully Connected
368
+ residual = hidden_states
369
+ hidden_states = self.post_attention_layernorm(hidden_states)
370
+ hidden_states = self.mlp(hidden_states)
371
+ hidden_states = residual + hidden_states
372
+
373
+ outputs = (hidden_states,)
374
+ if output_attentions:
375
+ outputs += (self_attn_weights,)
376
+
377
+ return outputs
378
+
379
+
380
+ class TriLMLinearPreTrainedModel(PreTrainedModel):
381
+ config_class = TriLMLinearConfig
382
+ base_model_prefix = "model"
383
+ supports_gradient_checkpointing = True
384
+ _no_split_modules = ["TriLMLinearDecoderLayer"]
385
+ _skip_keys_device_placement = ["past_key_values"]
386
+ _supports_flash_attn_2 = True
387
+ _supports_sdpa = True
388
+ _supports_flex_attn = True
389
+ _supports_cache_class = True
390
+ _supports_quantized_cache = True
391
+ _supports_static_cache = True
392
+ _supports_attention_backend = True
393
+
394
+ def _init_weights(self, module):
395
+ std = self.config.initializer_range
396
+ if isinstance(module, nn.Linear):
397
+ module.weight.data.normal_(mean=0.0, std=std)
398
+ if module.bias is not None:
399
+ module.bias.data.zero_()
400
+ elif isinstance(module, nn.Embedding):
401
+ module.weight.data.normal_(mean=0.0, std=std)
402
+ if module.padding_idx is not None:
403
+ module.weight.data[module.padding_idx].zero_()
404
+
405
+
406
+
407
+
408
+ class TriLMLinearModel(TriLMLinearPreTrainedModel):
409
+ """
410
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TriLMLinearDecoderLayer`]
411
+
412
+ Args:
413
+ config: TriLMLinearConfig
414
+ """
415
+
416
+ def __init__(self, config: TriLMLinearConfig):
417
+ super().__init__(config)
418
+ self.padding_idx = config.pad_token_id
419
+ self.vocab_size = config.vocab_size
420
+
421
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
422
+ self.layers = nn.ModuleList(
423
+ [TriLMLinearDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
424
+ )
425
+ self.norm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
426
+ self.rotary_emb = TriLMLinearRotaryEmbedding(config=config)
427
+ self.gradient_checkpointing = False
428
+
429
+ # Initialize weights and apply final processing
430
+ self.post_init()
431
+
432
+ def get_input_embeddings(self):
433
+ return self.embed_tokens
434
+
435
+ def set_input_embeddings(self, value):
436
+ self.embed_tokens = value
437
+
438
+ def forward(
439
+ self,
440
+ input_ids: torch.LongTensor = None,
441
+ attention_mask: Optional[torch.Tensor] = None,
442
+ position_ids: Optional[torch.LongTensor] = None,
443
+ past_key_values: Optional[Cache] = None,
444
+ inputs_embeds: Optional[torch.FloatTensor] = None,
445
+ use_cache: Optional[bool] = None,
446
+ output_attentions: Optional[bool] = None,
447
+ output_hidden_states: Optional[bool] = None,
448
+ return_dict: Optional[bool] = None,
449
+ cache_position: Optional[torch.LongTensor] = None,
450
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
451
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
452
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
453
+ output_hidden_states = (
454
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
455
+ )
456
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
457
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
458
+
459
+ if (input_ids is None) ^ (inputs_embeds is not None):
460
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
461
+
462
+ if self.gradient_checkpointing and self.training and use_cache:
463
+ logger.warning_once(
464
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
465
+ )
466
+ use_cache = False
467
+
468
+ if inputs_embeds is None:
469
+ inputs_embeds = self.embed_tokens(input_ids)
470
+
471
+ if use_cache and past_key_values is None:
472
+ past_key_values = DynamicCache()
473
+
474
+ if cache_position is None:
475
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
476
+ cache_position = torch.arange(
477
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
478
+ )
479
+
480
+ if position_ids is None:
481
+ position_ids = cache_position.unsqueeze(0)
482
+
483
+ causal_mask = self._update_causal_mask(
484
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
485
+ )
486
+
487
+ hidden_states = inputs_embeds
488
+
489
+ # create position embeddings to be shared across the decoder layers
490
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
491
+
492
+ # decoder layers
493
+ all_hidden_states = () if output_hidden_states else None
494
+ all_self_attns = () if output_attentions else None
495
+
496
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
497
+ if output_hidden_states:
498
+ all_hidden_states += (hidden_states,)
499
+
500
+ if self.gradient_checkpointing and self.training:
501
+ layer_outputs = self._gradient_checkpointing_func(
502
+ decoder_layer.__call__,
503
+ hidden_states,
504
+ causal_mask,
505
+ position_ids,
506
+ past_key_values,
507
+ output_attentions,
508
+ use_cache,
509
+ cache_position,
510
+ position_embeddings,
511
+ )
512
+ else:
513
+ layer_outputs = decoder_layer(
514
+ hidden_states,
515
+ attention_mask=causal_mask,
516
+ position_ids=position_ids,
517
+ past_key_value=past_key_values,
518
+ output_attentions=output_attentions,
519
+ use_cache=use_cache,
520
+ cache_position=cache_position,
521
+ position_embeddings=position_embeddings,
522
+ **flash_attn_kwargs,
523
+ )
524
+
525
+ hidden_states = layer_outputs[0]
526
+
527
+ if output_attentions:
528
+ all_self_attns += (layer_outputs[1],)
529
+
530
+ hidden_states = self.norm(hidden_states)
531
+
532
+ # add hidden states from the last decoder layer
533
+ if output_hidden_states:
534
+ all_hidden_states += (hidden_states,)
535
+
536
+ output = BaseModelOutputWithPast(
537
+ last_hidden_state=hidden_states,
538
+ past_key_values=past_key_values if use_cache else None,
539
+ hidden_states=all_hidden_states,
540
+ attentions=all_self_attns,
541
+ )
542
+ return output if return_dict else output.to_tuple()
543
+
544
+ def _update_causal_mask(
545
+ self,
546
+ attention_mask: torch.Tensor,
547
+ input_tensor: torch.Tensor,
548
+ cache_position: torch.Tensor,
549
+ past_key_values: Cache,
550
+ output_attentions: bool,
551
+ ):
552
+ if self.config._attn_implementation == "flash_attention_2":
553
+ if attention_mask is not None and (attention_mask == 0.0).any():
554
+ return attention_mask
555
+ return None
556
+
557
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
558
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
559
+ # to infer the attention mask.
560
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
561
+ using_static_cache = isinstance(past_key_values, StaticCache)
562
+
563
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
564
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
565
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
566
+ attention_mask,
567
+ inputs_embeds=input_tensor,
568
+ past_key_values_length=past_seen_tokens,
569
+ is_training=self.training,
570
+ ):
571
+ return None
572
+
573
+ dtype, device = input_tensor.dtype, input_tensor.device
574
+ sequence_length = input_tensor.shape[1]
575
+ if using_static_cache:
576
+ target_length = past_key_values.get_max_cache_shape()
577
+ else:
578
+ target_length = (
579
+ attention_mask.shape[-1]
580
+ if isinstance(attention_mask, torch.Tensor)
581
+ else past_seen_tokens + sequence_length + 1
582
+ )
583
+
584
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
585
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
586
+ attention_mask,
587
+ sequence_length=sequence_length,
588
+ target_length=target_length,
589
+ dtype=dtype,
590
+ device=device,
591
+ cache_position=cache_position,
592
+ batch_size=input_tensor.shape[0],
593
+ )
594
+
595
+ if (
596
+ self.config._attn_implementation == "sdpa"
597
+ and attention_mask is not None
598
+ and attention_mask.device.type == "cuda"
599
+ and not output_attentions
600
+ ):
601
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
602
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
603
+ # Details: https://github.com/pytorch/pytorch/issues/110213
604
+ min_dtype = torch.finfo(dtype).min
605
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
606
+
607
+ return causal_mask
608
+
609
+ @staticmethod
610
+ def _prepare_4d_causal_attention_mask_with_cache_position(
611
+ attention_mask: torch.Tensor,
612
+ sequence_length: int,
613
+ target_length: int,
614
+ dtype: torch.dtype,
615
+ device: torch.device,
616
+ cache_position: torch.Tensor,
617
+ batch_size: int,
618
+ **kwargs,
619
+ ):
620
+ """
621
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
622
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
623
+
624
+ Args:
625
+ attention_mask (`torch.Tensor`):
626
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
627
+ `(batch_size, 1, query_length, key_value_length)`.
628
+ sequence_length (`int`):
629
+ The sequence length being processed.
630
+ target_length (`int`):
631
+ The target length: when generating with static cache, the mask should be as long as the static cache,
632
+ to account for the 0 padding, the part of the cache that is not filled yet.
633
+ dtype (`torch.dtype`):
634
+ The dtype to use for the 4D attention mask.
635
+ device (`torch.device`):
636
+ The device to plcae the 4D attention mask on.
637
+ cache_position (`torch.Tensor`):
638
+ Indices depicting the position of the input sequence tokens in the sequence.
639
+ batch_size (`torch.Tensor`):
640
+ Batch size.
641
+ """
642
+ if attention_mask is not None and attention_mask.dim() == 4:
643
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
644
+ causal_mask = attention_mask
645
+ else:
646
+ min_dtype = torch.finfo(dtype).min
647
+ causal_mask = torch.full(
648
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
649
+ )
650
+ if sequence_length != 1:
651
+ causal_mask = torch.triu(causal_mask, diagonal=1)
652
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
653
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
654
+ if attention_mask is not None:
655
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
656
+ mask_length = attention_mask.shape[-1]
657
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
658
+ padding_mask = padding_mask == 0
659
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
660
+ padding_mask, min_dtype
661
+ )
662
+
663
+ return causal_mask
664
+
665
+
666
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
667
+
668
+
669
+ class TriLMLinearForCausalLM(TriLMLinearPreTrainedModel, GenerationMixin):
670
+ _tied_weights_keys = ["lm_head.weight"]
671
+ _tp_plan = {"lm_head": "colwise_rep"}
672
+
673
+ def __init__(self, config):
674
+ super().__init__(config)
675
+ self.model = TriLMLinearModel(config)
676
+ self.vocab_size = config.vocab_size
677
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
678
+
679
+ # Initialize weights and apply final processing
680
+ self.post_init()
681
+
682
+ def get_input_embeddings(self):
683
+ return self.model.embed_tokens
684
+
685
+ def set_input_embeddings(self, value):
686
+ self.model.embed_tokens = value
687
+
688
+ def get_output_embeddings(self):
689
+ return self.lm_head
690
+
691
+ def set_output_embeddings(self, new_embeddings):
692
+ self.lm_head = new_embeddings
693
+
694
+ def set_decoder(self, decoder):
695
+ self.model = decoder
696
+
697
+ def get_decoder(self):
698
+ return self.model
699
+
700
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
701
+ def forward(
702
+ self,
703
+ input_ids: torch.LongTensor = None,
704
+ attention_mask: Optional[torch.Tensor] = None,
705
+ position_ids: Optional[torch.LongTensor] = None,
706
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
707
+ inputs_embeds: Optional[torch.FloatTensor] = None,
708
+ labels: Optional[torch.LongTensor] = None,
709
+ use_cache: Optional[bool] = None,
710
+ output_attentions: Optional[bool] = None,
711
+ output_hidden_states: Optional[bool] = None,
712
+ return_dict: Optional[bool] = None,
713
+ cache_position: Optional[torch.LongTensor] = None,
714
+ logits_to_keep: Union[int, torch.Tensor] = 0,
715
+ **kwargs: Unpack[KwargsForCausalLM],
716
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
717
+ r"""
718
+ Args:
719
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
720
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
721
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
722
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
723
+
724
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
725
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
726
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
727
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
728
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
729
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
730
+
731
+ Returns:
732
+
733
+ Example:
734
+
735
+ ```python
736
+ >>> from transformers import AutoTokenizer, TriLMLinearForCausalLM
737
+
738
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
739
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
740
+
741
+ >>> # Generate
742
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
743
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
744
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
745
+ ```"""
746
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
747
+ output_hidden_states = (
748
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
749
+ )
750
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
751
+
752
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
753
+ outputs = self.model(
754
+ input_ids=input_ids,
755
+ attention_mask=attention_mask,
756
+ position_ids=position_ids,
757
+ past_key_values=past_key_values,
758
+ inputs_embeds=inputs_embeds,
759
+ use_cache=use_cache,
760
+ output_attentions=output_attentions,
761
+ output_hidden_states=output_hidden_states,
762
+ return_dict=return_dict,
763
+ cache_position=cache_position,
764
+ **kwargs,
765
+ )
766
+
767
+ hidden_states = outputs[0]
768
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
769
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
770
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
771
+
772
+ loss = None
773
+ if labels is not None:
774
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
775
+
776
+ if not return_dict:
777
+ output = (logits,) + outputs[1:]
778
+ return (loss,) + output if loss is not None else output
779
+
780
+ return CausalLMOutputWithPast(
781
+ loss=loss,
782
+ logits=logits,
783
+ past_key_values=outputs.past_key_values,
784
+ hidden_states=outputs.hidden_states,
785
+ attentions=outputs.attentions,
786
+ )
787
+
788
+
789
+ class TriLMLinearForSequenceClassification(TriLMLinearPreTrainedModel):
790
+ def __init__(self, config):
791
+ super().__init__(config)
792
+ self.num_labels = config.num_labels
793
+ self.model = TriLMLinearModel(config)
794
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
795
+
796
+ # Initialize weights and apply final processing
797
+ self.post_init()
798
+
799
+ def get_input_embeddings(self):
800
+ return self.model.embed_tokens
801
+
802
+ def set_input_embeddings(self, value):
803
+ self.model.embed_tokens = value
804
+
805
+ def forward(
806
+ self,
807
+ input_ids: Optional[torch.LongTensor] = None,
808
+ attention_mask: Optional[torch.Tensor] = None,
809
+ position_ids: Optional[torch.LongTensor] = None,
810
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
811
+ inputs_embeds: Optional[torch.FloatTensor] = None,
812
+ labels: Optional[torch.LongTensor] = None,
813
+ use_cache: Optional[bool] = None,
814
+ output_attentions: Optional[bool] = None,
815
+ output_hidden_states: Optional[bool] = None,
816
+ return_dict: Optional[bool] = None,
817
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
818
+ r"""
819
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
820
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
821
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
822
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
823
+ """
824
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
825
+
826
+ transformer_outputs = self.model(
827
+ input_ids,
828
+ attention_mask=attention_mask,
829
+ position_ids=position_ids,
830
+ past_key_values=past_key_values,
831
+ inputs_embeds=inputs_embeds,
832
+ use_cache=use_cache,
833
+ output_attentions=output_attentions,
834
+ output_hidden_states=output_hidden_states,
835
+ return_dict=return_dict,
836
+ )
837
+ hidden_states = transformer_outputs[0]
838
+ logits = self.score(hidden_states)
839
+
840
+ if input_ids is not None:
841
+ batch_size = input_ids.shape[0]
842
+ else:
843
+ batch_size = inputs_embeds.shape[0]
844
+
845
+ if self.config.pad_token_id is None and batch_size != 1:
846
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
847
+ if self.config.pad_token_id is None:
848
+ sequence_lengths = -1
849
+ else:
850
+ if input_ids is not None:
851
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
852
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
853
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
854
+ sequence_lengths = sequence_lengths.to(logits.device)
855
+ else:
856
+ sequence_lengths = -1
857
+
858
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
859
+
860
+ loss = None
861
+ if labels is not None:
862
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
863
+
864
+ if not return_dict:
865
+ output = (pooled_logits,) + transformer_outputs[1:]
866
+ return ((loss,) + output) if loss is not None else output
867
+
868
+ return SequenceClassifierOutputWithPast(
869
+ loss=loss,
870
+ logits=pooled_logits,
871
+ past_key_values=transformer_outputs.past_key_values,
872
+ hidden_states=transformer_outputs.hidden_states,
873
+ attentions=transformer_outputs.attentions,
874
+ )
875
+
876
+
877
+ class TriLMLinearForQuestionAnswering(TriLMLinearPreTrainedModel):
878
+ base_model_prefix = "transformer"
879
+
880
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TriLMLinear
881
+ def __init__(self, config):
882
+ super().__init__(config)
883
+ self.transformer = TriLMLinearModel(config)
884
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
885
+
886
+ # Initialize weights and apply final processing
887
+ self.post_init()
888
+
889
+ def get_input_embeddings(self):
890
+ return self.transformer.embed_tokens
891
+
892
+ def set_input_embeddings(self, value):
893
+ self.transformer.embed_tokens = value
894
+
895
+ def forward(
896
+ self,
897
+ input_ids: Optional[torch.LongTensor] = None,
898
+ attention_mask: Optional[torch.FloatTensor] = None,
899
+ position_ids: Optional[torch.LongTensor] = None,
900
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
901
+ inputs_embeds: Optional[torch.FloatTensor] = None,
902
+ start_positions: Optional[torch.LongTensor] = None,
903
+ end_positions: Optional[torch.LongTensor] = None,
904
+ output_attentions: Optional[bool] = None,
905
+ output_hidden_states: Optional[bool] = None,
906
+ return_dict: Optional[bool] = None,
907
+ **kwargs,
908
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
909
+ r"""
910
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
911
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
912
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
913
+ are not taken into account for computing the loss.
914
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
915
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
916
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
917
+ are not taken into account for computing the loss.
918
+ """
919
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
920
+
921
+ outputs = self.transformer(
922
+ input_ids,
923
+ attention_mask=attention_mask,
924
+ position_ids=position_ids,
925
+ past_key_values=past_key_values,
926
+ inputs_embeds=inputs_embeds,
927
+ output_attentions=output_attentions,
928
+ output_hidden_states=output_hidden_states,
929
+ return_dict=return_dict,
930
+ )
931
+
932
+ sequence_output = outputs[0]
933
+
934
+ logits = self.qa_outputs(sequence_output)
935
+ start_logits, end_logits = logits.split(1, dim=-1)
936
+ start_logits = start_logits.squeeze(-1).contiguous()
937
+ end_logits = end_logits.squeeze(-1).contiguous()
938
+
939
+ loss = None
940
+ if start_positions is not None and end_positions is not None:
941
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
942
+
943
+ if not return_dict:
944
+ output = (start_logits, end_logits) + outputs[2:]
945
+ return ((loss,) + output) if loss is not None else output
946
+
947
+ return QuestionAnsweringModelOutput(
948
+ loss=loss,
949
+ start_logits=start_logits,
950
+ end_logits=end_logits,
951
+ hidden_states=outputs.hidden_states,
952
+ attentions=outputs.attentions,
953
+ )
954
+
955
+ class TriLMLinearForTokenClassification(TriLMLinearPreTrainedModel):
956
+ def __init__(self, config):
957
+ super().__init__(config)
958
+ self.num_labels = config.num_labels
959
+ self.model = TriLMLinearModel(config)
960
+ if getattr(config, "classifier_dropout", None) is not None:
961
+ classifier_dropout = config.classifier_dropout
962
+ elif getattr(config, "hidden_dropout", None) is not None:
963
+ classifier_dropout = config.hidden_dropout
964
+ else:
965
+ classifier_dropout = 0.1
966
+ self.dropout = nn.Dropout(classifier_dropout)
967
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
968
+
969
+ # Initialize weights and apply final processing
970
+ self.post_init()
971
+
972
+ def get_input_embeddings(self):
973
+ return self.model.embed_tokens
974
+
975
+ def set_input_embeddings(self, value):
976
+ self.model.embed_tokens = value
977
+
978
+ def forward(
979
+ self,
980
+ input_ids: Optional[torch.LongTensor] = None,
981
+ attention_mask: Optional[torch.Tensor] = None,
982
+ position_ids: Optional[torch.LongTensor] = None,
983
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
984
+ inputs_embeds: Optional[torch.FloatTensor] = None,
985
+ labels: Optional[torch.LongTensor] = None,
986
+ use_cache: Optional[bool] = None,
987
+ output_attentions: Optional[bool] = None,
988
+ output_hidden_states: Optional[bool] = None,
989
+ return_dict: Optional[bool] = None,
990
+ ) -> Union[Tuple, TokenClassifierOutput]:
991
+ r"""
992
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
993
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
994
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
995
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
996
+ """
997
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
998
+
999
+ outputs = self.model(
1000
+ input_ids,
1001
+ attention_mask=attention_mask,
1002
+ position_ids=position_ids,
1003
+ past_key_values=past_key_values,
1004
+ inputs_embeds=inputs_embeds,
1005
+ use_cache=use_cache,
1006
+ output_attentions=output_attentions,
1007
+ output_hidden_states=output_hidden_states,
1008
+ return_dict=return_dict,
1009
+ )
1010
+ sequence_output = outputs[0]
1011
+ sequence_output = self.dropout(sequence_output)
1012
+ logits = self.score(sequence_output)
1013
+
1014
+ loss = None
1015
+ if labels is not None:
1016
+ loss = self.loss_function(logits, labels, self.config)
1017
+
1018
+ if not return_dict:
1019
+ output = (logits,) + outputs[2:]
1020
+ return ((loss,) + output) if loss is not None else output
1021
+
1022
+ return TokenClassifierOutput(
1023
+ loss=loss,
1024
+ logits=logits,
1025
+ hidden_states=outputs.hidden_states,
1026
+ attentions=outputs.attentions,
1027
+ )
1028
+
1029
+
1030
+ __all__ = [
1031
+ "TriLMLinearForCausalLM",
1032
+ "TriLMLinearModel",
1033
+ "TriLMLinearPreTrainedModel",
1034
+ "TriLMLinearForSequenceClassification",
1035
+ "TriLMLinearForQuestionAnswering",
1036
+ "TriLMLinearForTokenClassification",
1037
+ ]
Mistral-Large-Instruct-2407_trirun/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TriLMLinearForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_trilmlinear.TriLMLinearConfig",
7
+ "AutoModel": "modeling_trilmlinear.TriLMLinearModel",
8
+ "AutoModelForCausalLM": "modeling_trilmlinear.TriLMLinearForCausalLM"
9
+ },
10
+ "attention_dropout": 0.0,
11
+ "bos_token_id": 1,
12
+ "pad_token_id": 2,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 12288,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 28672,
18
+ "max_position_embeddings": 131072,
19
+ "model_type": "TriLMLinear",
20
+ "num_attention_heads": 96,
21
+ "num_hidden_layers": 88,
22
+ "num_key_value_heads": 8,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_theta": 1000000.0,
25
+ "sliding_window": null,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.42.3",
29
+ "use_cache": true,
30
+ "vocab_size": 32768
31
+ }
32
+
Mistral-Large-Instruct-2407_trirun/configuration_trilmlinear.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """TriLMLinear model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class TriLMLinearConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`TriLMLinearModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_attention_heads
128
+
129
+ ```python
130
+ >>> from transformers import LlamaModel, LlamaConfig
131
+
132
+ >>> # Initializing a LLaMA llama-7b style configuration
133
+ >>> configuration = LlamaConfig()
134
+
135
+ >>> # Initializing a model from the llama-7b style configuration
136
+ >>> model = LlamaModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "TriLMLinear"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+ # Default tensor parallel plan for base model `LlamaModel`
145
+ base_model_tp_plan = {
146
+ "layers.*.self_attn.q_proj": "colwise",
147
+ "layers.*.self_attn.k_proj": "colwise",
148
+ "layers.*.self_attn.v_proj": "colwise",
149
+ "layers.*.self_attn.o_proj": "rowwise",
150
+ "layers.*.mlp.gate_proj": "colwise",
151
+ "layers.*.mlp.up_proj": "colwise",
152
+ "layers.*.mlp.down_proj": "rowwise",
153
+ }
154
+
155
+ def __init__(
156
+ self,
157
+ vocab_size=32000,
158
+ hidden_size=4096,
159
+ intermediate_size=11008,
160
+ num_hidden_layers=32,
161
+ num_attention_heads=32,
162
+ num_key_value_heads=None,
163
+ hidden_act="silu",
164
+ max_position_embeddings=2048,
165
+ initializer_range=0.02,
166
+ rms_norm_eps=1e-6,
167
+ use_cache=True,
168
+ pad_token_id=None,
169
+ bos_token_id=1,
170
+ eos_token_id=2,
171
+ pretraining_tp=1,
172
+ tie_word_embeddings=False,
173
+ rope_theta=10000.0,
174
+ rope_scaling=None,
175
+ attention_bias=False,
176
+ attention_dropout=0.0,
177
+ mlp_bias=False,
178
+ head_dim=None,
179
+ **kwargs,
180
+ ):
181
+ self.vocab_size = vocab_size
182
+ self.max_position_embeddings = max_position_embeddings
183
+ self.hidden_size = hidden_size
184
+ self.intermediate_size = intermediate_size
185
+ self.num_hidden_layers = num_hidden_layers
186
+ self.num_attention_heads = num_attention_heads
187
+
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = rms_norm_eps
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.mlp_bias = mlp_bias
203
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
204
+ # Validate the correctness of rotary position embeddings parameters
205
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
206
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
207
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
208
+ rope_config_validation(self)
209
+
210
+ super().__init__(
211
+ pad_token_id=pad_token_id,
212
+ bos_token_id=bos_token_id,
213
+ eos_token_id=eos_token_id,
214
+ tie_word_embeddings=tie_word_embeddings,
215
+ **kwargs,
216
+ )
217
+
218
+
219
+ __all__ = ["TriLMLinearConfig"]
220
+
Mistral-Large-Instruct-2407_trirun/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:603475b555afc8f8bbdef658767ffad9dfdc2db744cd04a5a786f620e3234866
3
+ size 32082718824
Mistral-Large-Instruct-2407_trirun/modeling_trilmlinear.py ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ from typing import Callable, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
28
+ from transformers.generation import GenerationMixin
29
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
30
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
39
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
40
+ from transformers.processing_utils import Unpack
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
42
+ from transformers.utils import (
43
+ LossKwargs,
44
+ add_code_sample_docstrings,
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.deprecation import deprecate_kwarg
51
+ from .configuration_trilmlinear import TriLMLinearConfig
52
+ import marlin
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+
57
+
58
+ class TriLMLinear(torch.nn.Module):
59
+ def __init__(self, in_dims, out_dims, thread_k=128, thread_n=128, groupsize=-1, sms=-1):
60
+ super(TriLMLinear, self).__init__()
61
+ self.in_dims, self.out_dims = in_dims, out_dims
62
+ self.thread_k, self.thread_n, self.groupsize, self.sms = thread_k, thread_n, groupsize, sms
63
+ packed_weight = torch.ones((in_dims//16, out_dims), dtype=torch.int32)
64
+ scales = torch.ones((1, out_dims), dtype=torch.float16)
65
+ self.register_buffer("packed_weight", packed_weight)
66
+ self.register_buffer("scales", scales)
67
+ self.workspace = torch.zeros(self.out_dims // 128 * 16, device="cuda")
68
+ def forward(self, hidden_state):
69
+ # print(A, self.name)
70
+ batch_size, seqlen, last_dim = hidden_state.shape
71
+ output = torch.zeros((batch_size * seqlen, self.out_dims), dtype=torch.float16, device=self.packed_weight.device)
72
+ marlin.mul(hidden_state.reshape(batch_size * seqlen, last_dim).contiguous(), self.packed_weight, output, self.scales,
73
+ self.workspace, self.thread_k, self.thread_n, self.sms)
74
+ return output.reshape(batch_size, seqlen, -1)
75
+
76
+
77
+ class TriLMLinearRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ TriLMLinearRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ hidden_states = hidden_states.to(torch.float32)
89
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
90
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
91
+ return self.weight * hidden_states.to(input_dtype)
92
+
93
+ def extra_repr(self):
94
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
95
+
96
+
97
+ ALL_LAYERNORM_LAYERS.append(TriLMLinearRMSNorm)
98
+
99
+
100
+ class TriLMLinearRotaryEmbedding(nn.Module):
101
+ def __init__(self, config: TriLMLinearConfig, device=None):
102
+ super().__init__()
103
+ # BC: "rope_type" was originally "type"
104
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
105
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
106
+ else:
107
+ self.rope_type = "default"
108
+ self.max_seq_len_cached = config.max_position_embeddings
109
+ self.original_max_seq_len = config.max_position_embeddings
110
+
111
+ self.config = config
112
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
113
+
114
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
115
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
116
+ self.original_inv_freq = self.inv_freq
117
+
118
+ def _dynamic_frequency_update(self, position_ids, device):
119
+ """
120
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
121
+ 1 - growing beyond the cached sequence length (allow scaling)
122
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
123
+ """
124
+ seq_len = torch.max(position_ids) + 1
125
+ if seq_len > self.max_seq_len_cached: # growth
126
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
127
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
128
+ self.max_seq_len_cached = seq_len
129
+
130
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
131
+ # This .to() is needed if the model has been moved to a device after being initialized (because
132
+ # the buffer is automatically moved, but not the original copy)
133
+ self.original_inv_freq = self.original_inv_freq.to(device)
134
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
135
+ self.max_seq_len_cached = self.original_max_seq_len
136
+
137
+ @torch.no_grad()
138
+ def forward(self, x, position_ids):
139
+ if "dynamic" in self.rope_type:
140
+ self._dynamic_frequency_update(position_ids, device=x.device)
141
+
142
+ # Core RoPE block
143
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
144
+ position_ids_expanded = position_ids[:, None, :].float()
145
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
146
+ device_type = x.device.type
147
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
148
+ with torch.autocast(device_type=device_type, enabled=False):
149
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
150
+ emb = torch.cat((freqs, freqs), dim=-1)
151
+ cos = emb.cos()
152
+ sin = emb.sin()
153
+
154
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
155
+ cos = cos * self.attention_scaling
156
+ sin = sin * self.attention_scaling
157
+
158
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
159
+
160
+
161
+ def rotate_half(x):
162
+ """Rotates half the hidden dims of the input."""
163
+ x1 = x[..., : x.shape[-1] // 2]
164
+ x2 = x[..., x.shape[-1] // 2 :]
165
+ return torch.cat((-x2, x1), dim=-1)
166
+
167
+
168
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
169
+ """Applies Rotary Position Embedding to the query and key tensors.
170
+
171
+ Args:
172
+ q (`torch.Tensor`): The query tensor.
173
+ k (`torch.Tensor`): The key tensor.
174
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
175
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
176
+ position_ids (`torch.Tensor`, *optional*):
177
+ Deprecated and unused.
178
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
179
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
180
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
181
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
182
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
183
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
184
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
185
+ Returns:
186
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
187
+ """
188
+ cos = cos.unsqueeze(unsqueeze_dim)
189
+ sin = sin.unsqueeze(unsqueeze_dim)
190
+ q_embed = (q * cos) + (rotate_half(q) * sin)
191
+ k_embed = (k * cos) + (rotate_half(k) * sin)
192
+ return q_embed, k_embed
193
+
194
+
195
+ class TriLMLinearMLP(nn.Module):
196
+ def __init__(self, config):
197
+ super().__init__()
198
+ self.config = config
199
+ self.hidden_size = config.hidden_size
200
+ self.intermediate_size = config.intermediate_size
201
+ assert config.mlp_bias == False, config.mlp_bias
202
+ self.gate_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
203
+ self.up_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
204
+ self.down_proj = TriLMLinear(self.intermediate_size, self.hidden_size)
205
+ self.act_fn = ACT2FN[config.hidden_act]
206
+
207
+ def forward(self, x):
208
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
209
+ return down_proj
210
+
211
+
212
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
213
+ """
214
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
215
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
216
+ """
217
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
218
+ if n_rep == 1:
219
+ return hidden_states
220
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
221
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
222
+
223
+
224
+ def eager_attention_forward(
225
+ module: nn.Module,
226
+ query: torch.Tensor,
227
+ key: torch.Tensor,
228
+ value: torch.Tensor,
229
+ attention_mask: Optional[torch.Tensor],
230
+ scaling: float,
231
+ dropout: float = 0.0,
232
+ **kwargs,
233
+ ):
234
+ key_states = repeat_kv(key, module.num_key_value_groups)
235
+ value_states = repeat_kv(value, module.num_key_value_groups)
236
+
237
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
238
+ if attention_mask is not None:
239
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
240
+ attn_weights = attn_weights + causal_mask
241
+
242
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
243
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
244
+ attn_output = torch.matmul(attn_weights, value_states)
245
+ attn_output = attn_output.transpose(1, 2).contiguous()
246
+
247
+ return attn_output, attn_weights
248
+
249
+
250
+ class TriLMLinearAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
254
+ super().__init__()
255
+ self.config = config
256
+ self.layer_idx = layer_idx
257
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
258
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
259
+ self.scaling = self.head_dim**-0.5
260
+ self.attention_dropout = config.attention_dropout
261
+ self.is_causal = True
262
+ assert config.attention_bias == False
263
+ self.q_proj = TriLMLinear(
264
+ config.hidden_size, config.num_attention_heads * self.head_dim#, bias=config.attention_bias
265
+ )
266
+ self.k_proj = TriLMLinear(
267
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
268
+ )
269
+ self.v_proj = TriLMLinear(
270
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
271
+ )
272
+ self.o_proj = TriLMLinear(
273
+ config.num_attention_heads * self.head_dim, config.hidden_size#, bias=config.attention_bias
274
+ )
275
+
276
+ def forward(
277
+ self,
278
+ hidden_states: torch.Tensor,
279
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
280
+ attention_mask: Optional[torch.Tensor],
281
+ past_key_value: Optional[Cache] = None,
282
+ cache_position: Optional[torch.LongTensor] = None,
283
+ **kwargs: Unpack[FlashAttentionKwargs],
284
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
285
+ input_shape = hidden_states.shape[:-1]
286
+ hidden_shape = (*input_shape, -1, self.head_dim)
287
+
288
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
289
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
290
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
291
+
292
+ cos, sin = position_embeddings
293
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
294
+
295
+ if past_key_value is not None:
296
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
297
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
298
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
299
+
300
+ attention_interface: Callable = eager_attention_forward
301
+ if self.config._attn_implementation != "eager":
302
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
303
+ logger.warning_once(
304
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
305
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
306
+ )
307
+ else:
308
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
309
+
310
+ attn_output, attn_weights = attention_interface(
311
+ self,
312
+ query_states,
313
+ key_states,
314
+ value_states,
315
+ attention_mask,
316
+ dropout=0.0 if not self.training else self.attention_dropout,
317
+ scaling=self.scaling,
318
+ **kwargs,
319
+ )
320
+
321
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
322
+ attn_output = self.o_proj(attn_output)
323
+ return attn_output, attn_weights
324
+
325
+
326
+ class TriLMLinearDecoderLayer(nn.Module):
327
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
328
+ super().__init__()
329
+ self.hidden_size = config.hidden_size
330
+
331
+ self.self_attn = TriLMLinearAttention(config=config, layer_idx=layer_idx)
332
+
333
+ self.mlp = TriLMLinearMLP(config)
334
+ self.input_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
335
+ self.post_attention_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
336
+
337
+ def forward(
338
+ self,
339
+ hidden_states: torch.Tensor,
340
+ attention_mask: Optional[torch.Tensor] = None,
341
+ position_ids: Optional[torch.LongTensor] = None,
342
+ past_key_value: Optional[Cache] = None,
343
+ output_attentions: Optional[bool] = False,
344
+ use_cache: Optional[bool] = False,
345
+ cache_position: Optional[torch.LongTensor] = None,
346
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
347
+ **kwargs: Unpack[FlashAttentionKwargs],
348
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
349
+ residual = hidden_states
350
+
351
+ hidden_states = self.input_layernorm(hidden_states)
352
+
353
+ # Self Attention
354
+ hidden_states, self_attn_weights = self.self_attn(
355
+ hidden_states=hidden_states,
356
+ attention_mask=attention_mask,
357
+ position_ids=position_ids,
358
+ past_key_value=past_key_value,
359
+ output_attentions=output_attentions,
360
+ use_cache=use_cache,
361
+ cache_position=cache_position,
362
+ position_embeddings=position_embeddings,
363
+ **kwargs,
364
+ )
365
+ hidden_states = residual + hidden_states
366
+
367
+ # Fully Connected
368
+ residual = hidden_states
369
+ hidden_states = self.post_attention_layernorm(hidden_states)
370
+ hidden_states = self.mlp(hidden_states)
371
+ hidden_states = residual + hidden_states
372
+
373
+ outputs = (hidden_states,)
374
+ if output_attentions:
375
+ outputs += (self_attn_weights,)
376
+
377
+ return outputs
378
+
379
+
380
+ class TriLMLinearPreTrainedModel(PreTrainedModel):
381
+ config_class = TriLMLinearConfig
382
+ base_model_prefix = "model"
383
+ supports_gradient_checkpointing = True
384
+ _no_split_modules = ["TriLMLinearDecoderLayer"]
385
+ _skip_keys_device_placement = ["past_key_values"]
386
+ _supports_flash_attn_2 = True
387
+ _supports_sdpa = True
388
+ _supports_flex_attn = True
389
+ _supports_cache_class = True
390
+ _supports_quantized_cache = True
391
+ _supports_static_cache = True
392
+ _supports_attention_backend = True
393
+
394
+ def _init_weights(self, module):
395
+ std = self.config.initializer_range
396
+ if isinstance(module, nn.Linear):
397
+ module.weight.data.normal_(mean=0.0, std=std)
398
+ if module.bias is not None:
399
+ module.bias.data.zero_()
400
+ elif isinstance(module, nn.Embedding):
401
+ module.weight.data.normal_(mean=0.0, std=std)
402
+ if module.padding_idx is not None:
403
+ module.weight.data[module.padding_idx].zero_()
404
+
405
+
406
+
407
+
408
+ class TriLMLinearModel(TriLMLinearPreTrainedModel):
409
+ """
410
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TriLMLinearDecoderLayer`]
411
+
412
+ Args:
413
+ config: TriLMLinearConfig
414
+ """
415
+
416
+ def __init__(self, config: TriLMLinearConfig):
417
+ super().__init__(config)
418
+ self.padding_idx = config.pad_token_id
419
+ self.vocab_size = config.vocab_size
420
+
421
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
422
+ self.layers = nn.ModuleList(
423
+ [TriLMLinearDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
424
+ )
425
+ self.norm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
426
+ self.rotary_emb = TriLMLinearRotaryEmbedding(config=config)
427
+ self.gradient_checkpointing = False
428
+
429
+ # Initialize weights and apply final processing
430
+ self.post_init()
431
+
432
+ def get_input_embeddings(self):
433
+ return self.embed_tokens
434
+
435
+ def set_input_embeddings(self, value):
436
+ self.embed_tokens = value
437
+
438
+ def forward(
439
+ self,
440
+ input_ids: torch.LongTensor = None,
441
+ attention_mask: Optional[torch.Tensor] = None,
442
+ position_ids: Optional[torch.LongTensor] = None,
443
+ past_key_values: Optional[Cache] = None,
444
+ inputs_embeds: Optional[torch.FloatTensor] = None,
445
+ use_cache: Optional[bool] = None,
446
+ output_attentions: Optional[bool] = None,
447
+ output_hidden_states: Optional[bool] = None,
448
+ return_dict: Optional[bool] = None,
449
+ cache_position: Optional[torch.LongTensor] = None,
450
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
451
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
452
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
453
+ output_hidden_states = (
454
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
455
+ )
456
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
457
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
458
+
459
+ if (input_ids is None) ^ (inputs_embeds is not None):
460
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
461
+
462
+ if self.gradient_checkpointing and self.training and use_cache:
463
+ logger.warning_once(
464
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
465
+ )
466
+ use_cache = False
467
+
468
+ if inputs_embeds is None:
469
+ inputs_embeds = self.embed_tokens(input_ids)
470
+
471
+ if use_cache and past_key_values is None:
472
+ past_key_values = DynamicCache()
473
+
474
+ if cache_position is None:
475
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
476
+ cache_position = torch.arange(
477
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
478
+ )
479
+
480
+ if position_ids is None:
481
+ position_ids = cache_position.unsqueeze(0)
482
+
483
+ causal_mask = self._update_causal_mask(
484
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
485
+ )
486
+
487
+ hidden_states = inputs_embeds
488
+
489
+ # create position embeddings to be shared across the decoder layers
490
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
491
+
492
+ # decoder layers
493
+ all_hidden_states = () if output_hidden_states else None
494
+ all_self_attns = () if output_attentions else None
495
+
496
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
497
+ if output_hidden_states:
498
+ all_hidden_states += (hidden_states,)
499
+
500
+ if self.gradient_checkpointing and self.training:
501
+ layer_outputs = self._gradient_checkpointing_func(
502
+ decoder_layer.__call__,
503
+ hidden_states,
504
+ causal_mask,
505
+ position_ids,
506
+ past_key_values,
507
+ output_attentions,
508
+ use_cache,
509
+ cache_position,
510
+ position_embeddings,
511
+ )
512
+ else:
513
+ layer_outputs = decoder_layer(
514
+ hidden_states,
515
+ attention_mask=causal_mask,
516
+ position_ids=position_ids,
517
+ past_key_value=past_key_values,
518
+ output_attentions=output_attentions,
519
+ use_cache=use_cache,
520
+ cache_position=cache_position,
521
+ position_embeddings=position_embeddings,
522
+ **flash_attn_kwargs,
523
+ )
524
+
525
+ hidden_states = layer_outputs[0]
526
+
527
+ if output_attentions:
528
+ all_self_attns += (layer_outputs[1],)
529
+
530
+ hidden_states = self.norm(hidden_states)
531
+
532
+ # add hidden states from the last decoder layer
533
+ if output_hidden_states:
534
+ all_hidden_states += (hidden_states,)
535
+
536
+ output = BaseModelOutputWithPast(
537
+ last_hidden_state=hidden_states,
538
+ past_key_values=past_key_values if use_cache else None,
539
+ hidden_states=all_hidden_states,
540
+ attentions=all_self_attns,
541
+ )
542
+ return output if return_dict else output.to_tuple()
543
+
544
+ def _update_causal_mask(
545
+ self,
546
+ attention_mask: torch.Tensor,
547
+ input_tensor: torch.Tensor,
548
+ cache_position: torch.Tensor,
549
+ past_key_values: Cache,
550
+ output_attentions: bool,
551
+ ):
552
+ if self.config._attn_implementation == "flash_attention_2":
553
+ if attention_mask is not None and (attention_mask == 0.0).any():
554
+ return attention_mask
555
+ return None
556
+
557
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
558
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
559
+ # to infer the attention mask.
560
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
561
+ using_static_cache = isinstance(past_key_values, StaticCache)
562
+
563
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
564
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
565
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
566
+ attention_mask,
567
+ inputs_embeds=input_tensor,
568
+ past_key_values_length=past_seen_tokens,
569
+ is_training=self.training,
570
+ ):
571
+ return None
572
+
573
+ dtype, device = input_tensor.dtype, input_tensor.device
574
+ sequence_length = input_tensor.shape[1]
575
+ if using_static_cache:
576
+ target_length = past_key_values.get_max_cache_shape()
577
+ else:
578
+ target_length = (
579
+ attention_mask.shape[-1]
580
+ if isinstance(attention_mask, torch.Tensor)
581
+ else past_seen_tokens + sequence_length + 1
582
+ )
583
+
584
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
585
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
586
+ attention_mask,
587
+ sequence_length=sequence_length,
588
+ target_length=target_length,
589
+ dtype=dtype,
590
+ device=device,
591
+ cache_position=cache_position,
592
+ batch_size=input_tensor.shape[0],
593
+ )
594
+
595
+ if (
596
+ self.config._attn_implementation == "sdpa"
597
+ and attention_mask is not None
598
+ and attention_mask.device.type == "cuda"
599
+ and not output_attentions
600
+ ):
601
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
602
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
603
+ # Details: https://github.com/pytorch/pytorch/issues/110213
604
+ min_dtype = torch.finfo(dtype).min
605
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
606
+
607
+ return causal_mask
608
+
609
+ @staticmethod
610
+ def _prepare_4d_causal_attention_mask_with_cache_position(
611
+ attention_mask: torch.Tensor,
612
+ sequence_length: int,
613
+ target_length: int,
614
+ dtype: torch.dtype,
615
+ device: torch.device,
616
+ cache_position: torch.Tensor,
617
+ batch_size: int,
618
+ **kwargs,
619
+ ):
620
+ """
621
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
622
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
623
+
624
+ Args:
625
+ attention_mask (`torch.Tensor`):
626
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
627
+ `(batch_size, 1, query_length, key_value_length)`.
628
+ sequence_length (`int`):
629
+ The sequence length being processed.
630
+ target_length (`int`):
631
+ The target length: when generating with static cache, the mask should be as long as the static cache,
632
+ to account for the 0 padding, the part of the cache that is not filled yet.
633
+ dtype (`torch.dtype`):
634
+ The dtype to use for the 4D attention mask.
635
+ device (`torch.device`):
636
+ The device to plcae the 4D attention mask on.
637
+ cache_position (`torch.Tensor`):
638
+ Indices depicting the position of the input sequence tokens in the sequence.
639
+ batch_size (`torch.Tensor`):
640
+ Batch size.
641
+ """
642
+ if attention_mask is not None and attention_mask.dim() == 4:
643
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
644
+ causal_mask = attention_mask
645
+ else:
646
+ min_dtype = torch.finfo(dtype).min
647
+ causal_mask = torch.full(
648
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
649
+ )
650
+ if sequence_length != 1:
651
+ causal_mask = torch.triu(causal_mask, diagonal=1)
652
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
653
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
654
+ if attention_mask is not None:
655
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
656
+ mask_length = attention_mask.shape[-1]
657
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
658
+ padding_mask = padding_mask == 0
659
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
660
+ padding_mask, min_dtype
661
+ )
662
+
663
+ return causal_mask
664
+
665
+
666
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
667
+
668
+
669
+ class TriLMLinearForCausalLM(TriLMLinearPreTrainedModel, GenerationMixin):
670
+ _tied_weights_keys = ["lm_head.weight"]
671
+ _tp_plan = {"lm_head": "colwise_rep"}
672
+
673
+ def __init__(self, config):
674
+ super().__init__(config)
675
+ self.model = TriLMLinearModel(config)
676
+ self.vocab_size = config.vocab_size
677
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
678
+
679
+ # Initialize weights and apply final processing
680
+ self.post_init()
681
+
682
+ def get_input_embeddings(self):
683
+ return self.model.embed_tokens
684
+
685
+ def set_input_embeddings(self, value):
686
+ self.model.embed_tokens = value
687
+
688
+ def get_output_embeddings(self):
689
+ return self.lm_head
690
+
691
+ def set_output_embeddings(self, new_embeddings):
692
+ self.lm_head = new_embeddings
693
+
694
+ def set_decoder(self, decoder):
695
+ self.model = decoder
696
+
697
+ def get_decoder(self):
698
+ return self.model
699
+
700
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
701
+ def forward(
702
+ self,
703
+ input_ids: torch.LongTensor = None,
704
+ attention_mask: Optional[torch.Tensor] = None,
705
+ position_ids: Optional[torch.LongTensor] = None,
706
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
707
+ inputs_embeds: Optional[torch.FloatTensor] = None,
708
+ labels: Optional[torch.LongTensor] = None,
709
+ use_cache: Optional[bool] = None,
710
+ output_attentions: Optional[bool] = None,
711
+ output_hidden_states: Optional[bool] = None,
712
+ return_dict: Optional[bool] = None,
713
+ cache_position: Optional[torch.LongTensor] = None,
714
+ logits_to_keep: Union[int, torch.Tensor] = 0,
715
+ **kwargs: Unpack[KwargsForCausalLM],
716
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
717
+ r"""
718
+ Args:
719
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
720
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
721
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
722
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
723
+
724
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
725
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
726
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
727
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
728
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
729
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
730
+
731
+ Returns:
732
+
733
+ Example:
734
+
735
+ ```python
736
+ >>> from transformers import AutoTokenizer, TriLMLinearForCausalLM
737
+
738
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
739
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
740
+
741
+ >>> # Generate
742
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
743
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
744
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
745
+ ```"""
746
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
747
+ output_hidden_states = (
748
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
749
+ )
750
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
751
+
752
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
753
+ outputs = self.model(
754
+ input_ids=input_ids,
755
+ attention_mask=attention_mask,
756
+ position_ids=position_ids,
757
+ past_key_values=past_key_values,
758
+ inputs_embeds=inputs_embeds,
759
+ use_cache=use_cache,
760
+ output_attentions=output_attentions,
761
+ output_hidden_states=output_hidden_states,
762
+ return_dict=return_dict,
763
+ cache_position=cache_position,
764
+ **kwargs,
765
+ )
766
+
767
+ hidden_states = outputs[0]
768
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
769
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
770
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
771
+
772
+ loss = None
773
+ if labels is not None:
774
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
775
+
776
+ if not return_dict:
777
+ output = (logits,) + outputs[1:]
778
+ return (loss,) + output if loss is not None else output
779
+
780
+ return CausalLMOutputWithPast(
781
+ loss=loss,
782
+ logits=logits,
783
+ past_key_values=outputs.past_key_values,
784
+ hidden_states=outputs.hidden_states,
785
+ attentions=outputs.attentions,
786
+ )
787
+
788
+
789
+ class TriLMLinearForSequenceClassification(TriLMLinearPreTrainedModel):
790
+ def __init__(self, config):
791
+ super().__init__(config)
792
+ self.num_labels = config.num_labels
793
+ self.model = TriLMLinearModel(config)
794
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
795
+
796
+ # Initialize weights and apply final processing
797
+ self.post_init()
798
+
799
+ def get_input_embeddings(self):
800
+ return self.model.embed_tokens
801
+
802
+ def set_input_embeddings(self, value):
803
+ self.model.embed_tokens = value
804
+
805
+ def forward(
806
+ self,
807
+ input_ids: Optional[torch.LongTensor] = None,
808
+ attention_mask: Optional[torch.Tensor] = None,
809
+ position_ids: Optional[torch.LongTensor] = None,
810
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
811
+ inputs_embeds: Optional[torch.FloatTensor] = None,
812
+ labels: Optional[torch.LongTensor] = None,
813
+ use_cache: Optional[bool] = None,
814
+ output_attentions: Optional[bool] = None,
815
+ output_hidden_states: Optional[bool] = None,
816
+ return_dict: Optional[bool] = None,
817
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
818
+ r"""
819
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
820
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
821
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
822
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
823
+ """
824
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
825
+
826
+ transformer_outputs = self.model(
827
+ input_ids,
828
+ attention_mask=attention_mask,
829
+ position_ids=position_ids,
830
+ past_key_values=past_key_values,
831
+ inputs_embeds=inputs_embeds,
832
+ use_cache=use_cache,
833
+ output_attentions=output_attentions,
834
+ output_hidden_states=output_hidden_states,
835
+ return_dict=return_dict,
836
+ )
837
+ hidden_states = transformer_outputs[0]
838
+ logits = self.score(hidden_states)
839
+
840
+ if input_ids is not None:
841
+ batch_size = input_ids.shape[0]
842
+ else:
843
+ batch_size = inputs_embeds.shape[0]
844
+
845
+ if self.config.pad_token_id is None and batch_size != 1:
846
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
847
+ if self.config.pad_token_id is None:
848
+ sequence_lengths = -1
849
+ else:
850
+ if input_ids is not None:
851
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
852
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
853
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
854
+ sequence_lengths = sequence_lengths.to(logits.device)
855
+ else:
856
+ sequence_lengths = -1
857
+
858
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
859
+
860
+ loss = None
861
+ if labels is not None:
862
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
863
+
864
+ if not return_dict:
865
+ output = (pooled_logits,) + transformer_outputs[1:]
866
+ return ((loss,) + output) if loss is not None else output
867
+
868
+ return SequenceClassifierOutputWithPast(
869
+ loss=loss,
870
+ logits=pooled_logits,
871
+ past_key_values=transformer_outputs.past_key_values,
872
+ hidden_states=transformer_outputs.hidden_states,
873
+ attentions=transformer_outputs.attentions,
874
+ )
875
+
876
+
877
+ class TriLMLinearForQuestionAnswering(TriLMLinearPreTrainedModel):
878
+ base_model_prefix = "transformer"
879
+
880
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TriLMLinear
881
+ def __init__(self, config):
882
+ super().__init__(config)
883
+ self.transformer = TriLMLinearModel(config)
884
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
885
+
886
+ # Initialize weights and apply final processing
887
+ self.post_init()
888
+
889
+ def get_input_embeddings(self):
890
+ return self.transformer.embed_tokens
891
+
892
+ def set_input_embeddings(self, value):
893
+ self.transformer.embed_tokens = value
894
+
895
+ def forward(
896
+ self,
897
+ input_ids: Optional[torch.LongTensor] = None,
898
+ attention_mask: Optional[torch.FloatTensor] = None,
899
+ position_ids: Optional[torch.LongTensor] = None,
900
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
901
+ inputs_embeds: Optional[torch.FloatTensor] = None,
902
+ start_positions: Optional[torch.LongTensor] = None,
903
+ end_positions: Optional[torch.LongTensor] = None,
904
+ output_attentions: Optional[bool] = None,
905
+ output_hidden_states: Optional[bool] = None,
906
+ return_dict: Optional[bool] = None,
907
+ **kwargs,
908
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
909
+ r"""
910
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
911
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
912
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
913
+ are not taken into account for computing the loss.
914
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
915
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
916
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
917
+ are not taken into account for computing the loss.
918
+ """
919
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
920
+
921
+ outputs = self.transformer(
922
+ input_ids,
923
+ attention_mask=attention_mask,
924
+ position_ids=position_ids,
925
+ past_key_values=past_key_values,
926
+ inputs_embeds=inputs_embeds,
927
+ output_attentions=output_attentions,
928
+ output_hidden_states=output_hidden_states,
929
+ return_dict=return_dict,
930
+ )
931
+
932
+ sequence_output = outputs[0]
933
+
934
+ logits = self.qa_outputs(sequence_output)
935
+ start_logits, end_logits = logits.split(1, dim=-1)
936
+ start_logits = start_logits.squeeze(-1).contiguous()
937
+ end_logits = end_logits.squeeze(-1).contiguous()
938
+
939
+ loss = None
940
+ if start_positions is not None and end_positions is not None:
941
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
942
+
943
+ if not return_dict:
944
+ output = (start_logits, end_logits) + outputs[2:]
945
+ return ((loss,) + output) if loss is not None else output
946
+
947
+ return QuestionAnsweringModelOutput(
948
+ loss=loss,
949
+ start_logits=start_logits,
950
+ end_logits=end_logits,
951
+ hidden_states=outputs.hidden_states,
952
+ attentions=outputs.attentions,
953
+ )
954
+
955
+ class TriLMLinearForTokenClassification(TriLMLinearPreTrainedModel):
956
+ def __init__(self, config):
957
+ super().__init__(config)
958
+ self.num_labels = config.num_labels
959
+ self.model = TriLMLinearModel(config)
960
+ if getattr(config, "classifier_dropout", None) is not None:
961
+ classifier_dropout = config.classifier_dropout
962
+ elif getattr(config, "hidden_dropout", None) is not None:
963
+ classifier_dropout = config.hidden_dropout
964
+ else:
965
+ classifier_dropout = 0.1
966
+ self.dropout = nn.Dropout(classifier_dropout)
967
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
968
+
969
+ # Initialize weights and apply final processing
970
+ self.post_init()
971
+
972
+ def get_input_embeddings(self):
973
+ return self.model.embed_tokens
974
+
975
+ def set_input_embeddings(self, value):
976
+ self.model.embed_tokens = value
977
+
978
+ def forward(
979
+ self,
980
+ input_ids: Optional[torch.LongTensor] = None,
981
+ attention_mask: Optional[torch.Tensor] = None,
982
+ position_ids: Optional[torch.LongTensor] = None,
983
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
984
+ inputs_embeds: Optional[torch.FloatTensor] = None,
985
+ labels: Optional[torch.LongTensor] = None,
986
+ use_cache: Optional[bool] = None,
987
+ output_attentions: Optional[bool] = None,
988
+ output_hidden_states: Optional[bool] = None,
989
+ return_dict: Optional[bool] = None,
990
+ ) -> Union[Tuple, TokenClassifierOutput]:
991
+ r"""
992
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
993
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
994
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
995
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
996
+ """
997
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
998
+
999
+ outputs = self.model(
1000
+ input_ids,
1001
+ attention_mask=attention_mask,
1002
+ position_ids=position_ids,
1003
+ past_key_values=past_key_values,
1004
+ inputs_embeds=inputs_embeds,
1005
+ use_cache=use_cache,
1006
+ output_attentions=output_attentions,
1007
+ output_hidden_states=output_hidden_states,
1008
+ return_dict=return_dict,
1009
+ )
1010
+ sequence_output = outputs[0]
1011
+ sequence_output = self.dropout(sequence_output)
1012
+ logits = self.score(sequence_output)
1013
+
1014
+ loss = None
1015
+ if labels is not None:
1016
+ loss = self.loss_function(logits, labels, self.config)
1017
+
1018
+ if not return_dict:
1019
+ output = (logits,) + outputs[2:]
1020
+ return ((loss,) + output) if loss is not None else output
1021
+
1022
+ return TokenClassifierOutput(
1023
+ loss=loss,
1024
+ logits=logits,
1025
+ hidden_states=outputs.hidden_states,
1026
+ attentions=outputs.attentions,
1027
+ )
1028
+
1029
+
1030
+ __all__ = [
1031
+ "TriLMLinearForCausalLM",
1032
+ "TriLMLinearModel",
1033
+ "TriLMLinearPreTrainedModel",
1034
+ "TriLMLinearForSequenceClassification",
1035
+ "TriLMLinearForQuestionAnswering",
1036
+ "TriLMLinearForTokenClassification",
1037
+ ]
TriLMs/TriLM_1.1B_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e86557f21a033cc7b237989d3a70453099cde11f17c3d4bc679d348c7e30ac1
3
+ size 2299465632
TriLMs/TriLM_1.1B_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb839d7ca1acfe0154e10d345f054925b1e617afba565335b9c1997fa8a0c951
3
+ size 604858888
TriLMs/TriLM_1.5B_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c89dd3e035e76692400dc44be0e52e9ea6c50a83dcb582d71e80bfbb1d9e7472
3
+ size 3030610384
TriLMs/TriLM_1.5B_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e901b35a5471be1b1ba78105761eac87abf609fc84c7b5e68373cab7ef99f99
3
+ size 741620784
TriLMs/TriLM_190M_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2bb76df6f7dc4daae53c87008ef6720fb1f817861b0f0e85f258508e389f621
3
+ size 381093312
TriLMs/TriLM_190M_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed7dce396f76c149ee83e274e27767e035b4b36d08bbd4ff1767fa6c47ba0cf1
3
+ size 183178992
TriLMs/TriLM_2.4B_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:133f7b25a28148f1a39ef07b420ab4100bc0cbdd791b76358d23a035ed6a96e7
3
+ size 4922983496
TriLMs/TriLM_2.4B_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f9b77be25abb0fb606428c2a033b098ea89bc5ce40137c0e14092d53a6d4c11
3
+ size 1022934904
TriLMs/TriLM_3.9B_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96d2991e7880d1734fb28103ade8b6b9c2e821204b1102d658883c09a136b461
3
+ size 7984263792
TriLMs/TriLM_3.9B_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d2c108a7ac3848d89865f47778d48e9c81158d76b1670f7f9e57c097323940a
3
+ size 1545437592
TriLMs/TriLM_390M_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aee97f50ef163d1126f59d923435ac16930e660abc16275ec199434282b5213
3
+ size 784984184
TriLMs/TriLM_390M_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48b46988f6bb513fb72f13a479a42888b7b0b04c030bd4442dbbf0c8f96cdeb1
3
+ size 279032464
TriLMs/TriLM_560M_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ae4f86d95b0f3c4e2506ed1a6b9cc19178f30ac23e05adf40e18e6935c00d3f
3
+ size 1138510528
TriLMs/TriLM_560M_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b76f468faaf8c5282360050c6eb742bd2aeaada6eaa5c9c3ad9a36d864ec7fe
3
+ size 368428224
TriLMs/TriLM_830M_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a2109c1f319371dc387ab0b15d08354669e8aa73727c4abaaf1f3f83cf738c3
3
+ size 1668197712
TriLMs/TriLM_830M_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab58c093de49f63f139945f9720f38d07f7e0fc88cb15b98a60d0a73537fde51
3
+ size 479893304
TriLMs/TriLM_99M_Unpacked.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b4de19e9bc4da74ff12ac00997485a434c8e0c7846efcbd9cc44707b2dff56
3
+ size 199541696
TriLMs/TriLM_99M_Unpacked_trirun.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cb3736cefebbe565cd6fd2741461e38b0df232d1009d20f0b4bed4cfea2be34
3
+ size 115307616
Yi-34B/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "bos_token_id": 1,
6
+ "eos_token_id": 2,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 7168,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 20480,
11
+ "max_position_embeddings": 4096,
12
+ "model_type": "llama",
13
+ "num_attention_heads": 56,
14
+ "num_hidden_layers": 60,
15
+ "num_key_value_heads": 8,
16
+ "pad_token_id": 0,
17
+ "pretraining_tp": 1,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "rope_theta": 5000000.0,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.34.0",
24
+ "use_cache": true,
25
+ "vocab_size": 64000
26
+ }
Yi-34B/model.safetensors.aa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c75955447a8fd4a636f629b616951d57d0e2127f48f940b4894fe8c9acedce2
3
+ size 34388949084
Yi-34B/model.safetensors.ab ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd5e9de9497882619969ef48eed15810d168a66d70b56b42f5b025c03cb10ea7
3
+ size 34388949084
Yi-34B_trirun/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TriLMLinearForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_trilmlinear.TriLMLinearConfig",
7
+ "AutoModel": "modeling_trilmlinear.TriLMLinearModel",
8
+ "AutoModelForCausalLM": "modeling_trilmlinear.TriLMLinearForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 7168,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 20480,
16
+ "max_position_embeddings": 4096,
17
+ "model_type": "TriLMLinear",
18
+ "num_attention_heads": 56,
19
+ "num_hidden_layers": 60,
20
+ "num_key_value_heads": 8,
21
+ "pad_token_id": 0,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "rope_theta": 5000000.0,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.34.0",
29
+ "use_cache": true,
30
+ "vocab_size": 64000
31
+ }
Yi-34B_trirun/configuration_trilmlinear.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """TriLMLinear model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class TriLMLinearConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`TriLMLinearModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_attention_heads
128
+
129
+ ```python
130
+ >>> from transformers import LlamaModel, LlamaConfig
131
+
132
+ >>> # Initializing a LLaMA llama-7b style configuration
133
+ >>> configuration = LlamaConfig()
134
+
135
+ >>> # Initializing a model from the llama-7b style configuration
136
+ >>> model = LlamaModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "TriLMLinear"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+ # Default tensor parallel plan for base model `LlamaModel`
145
+ base_model_tp_plan = {
146
+ "layers.*.self_attn.q_proj": "colwise",
147
+ "layers.*.self_attn.k_proj": "colwise",
148
+ "layers.*.self_attn.v_proj": "colwise",
149
+ "layers.*.self_attn.o_proj": "rowwise",
150
+ "layers.*.mlp.gate_proj": "colwise",
151
+ "layers.*.mlp.up_proj": "colwise",
152
+ "layers.*.mlp.down_proj": "rowwise",
153
+ }
154
+
155
+ def __init__(
156
+ self,
157
+ vocab_size=32000,
158
+ hidden_size=4096,
159
+ intermediate_size=11008,
160
+ num_hidden_layers=32,
161
+ num_attention_heads=32,
162
+ num_key_value_heads=None,
163
+ hidden_act="silu",
164
+ max_position_embeddings=2048,
165
+ initializer_range=0.02,
166
+ rms_norm_eps=1e-6,
167
+ use_cache=True,
168
+ pad_token_id=None,
169
+ bos_token_id=1,
170
+ eos_token_id=2,
171
+ pretraining_tp=1,
172
+ tie_word_embeddings=False,
173
+ rope_theta=10000.0,
174
+ rope_scaling=None,
175
+ attention_bias=False,
176
+ attention_dropout=0.0,
177
+ mlp_bias=False,
178
+ head_dim=None,
179
+ **kwargs,
180
+ ):
181
+ self.vocab_size = vocab_size
182
+ self.max_position_embeddings = max_position_embeddings
183
+ self.hidden_size = hidden_size
184
+ self.intermediate_size = intermediate_size
185
+ self.num_hidden_layers = num_hidden_layers
186
+ self.num_attention_heads = num_attention_heads
187
+
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = rms_norm_eps
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.mlp_bias = mlp_bias
203
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
204
+ # Validate the correctness of rotary position embeddings parameters
205
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
206
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
207
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
208
+ rope_config_validation(self)
209
+
210
+ super().__init__(
211
+ pad_token_id=pad_token_id,
212
+ bos_token_id=bos_token_id,
213
+ eos_token_id=eos_token_id,
214
+ tie_word_embeddings=tie_word_embeddings,
215
+ **kwargs,
216
+ )
217
+
218
+
219
+ __all__ = ["TriLMLinearConfig"]
220
+
Yi-34B_trirun/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ca008dee2dd0a9279fb0f07c95652c077e7b963be7e589d73f8bff9d53c7811
3
+ size 10212234064
Yi-34B_trirun/modeling_trilmlinear.py ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ from typing import Callable, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
28
+ from transformers.generation import GenerationMixin
29
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
30
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
39
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
40
+ from transformers.processing_utils import Unpack
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
42
+ from transformers.utils import (
43
+ LossKwargs,
44
+ add_code_sample_docstrings,
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.deprecation import deprecate_kwarg
51
+ from .configuration_trilmlinear import TriLMLinearConfig
52
+ import marlin
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+
57
+
58
+ class TriLMLinear(torch.nn.Module):
59
+ def __init__(self, in_dims, out_dims, thread_k=128, thread_n=128, groupsize=-1, sms=-1):
60
+ super(TriLMLinear, self).__init__()
61
+ self.in_dims, self.out_dims = in_dims, out_dims
62
+ self.thread_k, self.thread_n, self.groupsize, self.sms = thread_k, thread_n, groupsize, sms
63
+ packed_weight = torch.ones((in_dims//16, out_dims), dtype=torch.int32)
64
+ scales = torch.ones((1, out_dims), dtype=torch.float16)
65
+ self.register_buffer("packed_weight", packed_weight)
66
+ self.register_buffer("scales", scales)
67
+ self.workspace = torch.zeros(self.out_dims // 128 * 16, device="cuda")
68
+ def forward(self, hidden_state):
69
+ # print(A, self.name)
70
+ batch_size, seqlen, last_dim = hidden_state.shape
71
+ output = torch.zeros((batch_size * seqlen, self.out_dims), dtype=torch.float16, device=self.packed_weight.device)
72
+ marlin.mul(hidden_state.reshape(batch_size * seqlen, last_dim).contiguous(), self.packed_weight, output, self.scales,
73
+ self.workspace, self.thread_k, self.thread_n, self.sms)
74
+ return output.reshape(batch_size, seqlen, -1)
75
+
76
+
77
+ class TriLMLinearRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ TriLMLinearRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ hidden_states = hidden_states.to(torch.float32)
89
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
90
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
91
+ return self.weight * hidden_states.to(input_dtype)
92
+
93
+ def extra_repr(self):
94
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
95
+
96
+
97
+ ALL_LAYERNORM_LAYERS.append(TriLMLinearRMSNorm)
98
+
99
+
100
+ class TriLMLinearRotaryEmbedding(nn.Module):
101
+ def __init__(self, config: TriLMLinearConfig, device=None):
102
+ super().__init__()
103
+ # BC: "rope_type" was originally "type"
104
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
105
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
106
+ else:
107
+ self.rope_type = "default"
108
+ self.max_seq_len_cached = config.max_position_embeddings
109
+ self.original_max_seq_len = config.max_position_embeddings
110
+
111
+ self.config = config
112
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
113
+
114
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
115
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
116
+ self.original_inv_freq = self.inv_freq
117
+
118
+ def _dynamic_frequency_update(self, position_ids, device):
119
+ """
120
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
121
+ 1 - growing beyond the cached sequence length (allow scaling)
122
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
123
+ """
124
+ seq_len = torch.max(position_ids) + 1
125
+ if seq_len > self.max_seq_len_cached: # growth
126
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
127
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
128
+ self.max_seq_len_cached = seq_len
129
+
130
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
131
+ # This .to() is needed if the model has been moved to a device after being initialized (because
132
+ # the buffer is automatically moved, but not the original copy)
133
+ self.original_inv_freq = self.original_inv_freq.to(device)
134
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
135
+ self.max_seq_len_cached = self.original_max_seq_len
136
+
137
+ @torch.no_grad()
138
+ def forward(self, x, position_ids):
139
+ if "dynamic" in self.rope_type:
140
+ self._dynamic_frequency_update(position_ids, device=x.device)
141
+
142
+ # Core RoPE block
143
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
144
+ position_ids_expanded = position_ids[:, None, :].float()
145
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
146
+ device_type = x.device.type
147
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
148
+ with torch.autocast(device_type=device_type, enabled=False):
149
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
150
+ emb = torch.cat((freqs, freqs), dim=-1)
151
+ cos = emb.cos()
152
+ sin = emb.sin()
153
+
154
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
155
+ cos = cos * self.attention_scaling
156
+ sin = sin * self.attention_scaling
157
+
158
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
159
+
160
+
161
+ def rotate_half(x):
162
+ """Rotates half the hidden dims of the input."""
163
+ x1 = x[..., : x.shape[-1] // 2]
164
+ x2 = x[..., x.shape[-1] // 2 :]
165
+ return torch.cat((-x2, x1), dim=-1)
166
+
167
+
168
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
169
+ """Applies Rotary Position Embedding to the query and key tensors.
170
+
171
+ Args:
172
+ q (`torch.Tensor`): The query tensor.
173
+ k (`torch.Tensor`): The key tensor.
174
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
175
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
176
+ position_ids (`torch.Tensor`, *optional*):
177
+ Deprecated and unused.
178
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
179
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
180
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
181
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
182
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
183
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
184
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
185
+ Returns:
186
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
187
+ """
188
+ cos = cos.unsqueeze(unsqueeze_dim)
189
+ sin = sin.unsqueeze(unsqueeze_dim)
190
+ q_embed = (q * cos) + (rotate_half(q) * sin)
191
+ k_embed = (k * cos) + (rotate_half(k) * sin)
192
+ return q_embed, k_embed
193
+
194
+
195
+ class TriLMLinearMLP(nn.Module):
196
+ def __init__(self, config):
197
+ super().__init__()
198
+ self.config = config
199
+ self.hidden_size = config.hidden_size
200
+ self.intermediate_size = config.intermediate_size
201
+ assert config.mlp_bias == False, config.mlp_bias
202
+ self.gate_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
203
+ self.up_proj = TriLMLinear(self.hidden_size, self.intermediate_size)
204
+ self.down_proj = TriLMLinear(self.intermediate_size, self.hidden_size)
205
+ self.act_fn = ACT2FN[config.hidden_act]
206
+
207
+ def forward(self, x):
208
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
209
+ return down_proj
210
+
211
+
212
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
213
+ """
214
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
215
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
216
+ """
217
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
218
+ if n_rep == 1:
219
+ return hidden_states
220
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
221
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
222
+
223
+
224
+ def eager_attention_forward(
225
+ module: nn.Module,
226
+ query: torch.Tensor,
227
+ key: torch.Tensor,
228
+ value: torch.Tensor,
229
+ attention_mask: Optional[torch.Tensor],
230
+ scaling: float,
231
+ dropout: float = 0.0,
232
+ **kwargs,
233
+ ):
234
+ key_states = repeat_kv(key, module.num_key_value_groups)
235
+ value_states = repeat_kv(value, module.num_key_value_groups)
236
+
237
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
238
+ if attention_mask is not None:
239
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
240
+ attn_weights = attn_weights + causal_mask
241
+
242
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
243
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
244
+ attn_output = torch.matmul(attn_weights, value_states)
245
+ attn_output = attn_output.transpose(1, 2).contiguous()
246
+
247
+ return attn_output, attn_weights
248
+
249
+
250
+ class TriLMLinearAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
254
+ super().__init__()
255
+ self.config = config
256
+ self.layer_idx = layer_idx
257
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
258
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
259
+ self.scaling = self.head_dim**-0.5
260
+ self.attention_dropout = config.attention_dropout
261
+ self.is_causal = True
262
+ assert config.attention_bias == False
263
+ self.q_proj = TriLMLinear(
264
+ config.hidden_size, config.num_attention_heads * self.head_dim#, bias=config.attention_bias
265
+ )
266
+ self.k_proj = TriLMLinear(
267
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
268
+ )
269
+ self.v_proj = TriLMLinear(
270
+ config.hidden_size, config.num_key_value_heads * self.head_dim#, bias=config.attention_bias
271
+ )
272
+ self.o_proj = TriLMLinear(
273
+ config.num_attention_heads * self.head_dim, config.hidden_size#, bias=config.attention_bias
274
+ )
275
+
276
+ def forward(
277
+ self,
278
+ hidden_states: torch.Tensor,
279
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
280
+ attention_mask: Optional[torch.Tensor],
281
+ past_key_value: Optional[Cache] = None,
282
+ cache_position: Optional[torch.LongTensor] = None,
283
+ **kwargs: Unpack[FlashAttentionKwargs],
284
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
285
+ input_shape = hidden_states.shape[:-1]
286
+ hidden_shape = (*input_shape, -1, self.head_dim)
287
+
288
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
289
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
290
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
291
+
292
+ cos, sin = position_embeddings
293
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
294
+
295
+ if past_key_value is not None:
296
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
297
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
298
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
299
+
300
+ attention_interface: Callable = eager_attention_forward
301
+ if self.config._attn_implementation != "eager":
302
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
303
+ logger.warning_once(
304
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
305
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
306
+ )
307
+ else:
308
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
309
+
310
+ attn_output, attn_weights = attention_interface(
311
+ self,
312
+ query_states,
313
+ key_states,
314
+ value_states,
315
+ attention_mask,
316
+ dropout=0.0 if not self.training else self.attention_dropout,
317
+ scaling=self.scaling,
318
+ **kwargs,
319
+ )
320
+
321
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
322
+ attn_output = self.o_proj(attn_output)
323
+ return attn_output, attn_weights
324
+
325
+
326
+ class TriLMLinearDecoderLayer(nn.Module):
327
+ def __init__(self, config: TriLMLinearConfig, layer_idx: int):
328
+ super().__init__()
329
+ self.hidden_size = config.hidden_size
330
+
331
+ self.self_attn = TriLMLinearAttention(config=config, layer_idx=layer_idx)
332
+
333
+ self.mlp = TriLMLinearMLP(config)
334
+ self.input_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
335
+ self.post_attention_layernorm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
336
+
337
+ def forward(
338
+ self,
339
+ hidden_states: torch.Tensor,
340
+ attention_mask: Optional[torch.Tensor] = None,
341
+ position_ids: Optional[torch.LongTensor] = None,
342
+ past_key_value: Optional[Cache] = None,
343
+ output_attentions: Optional[bool] = False,
344
+ use_cache: Optional[bool] = False,
345
+ cache_position: Optional[torch.LongTensor] = None,
346
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
347
+ **kwargs: Unpack[FlashAttentionKwargs],
348
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
349
+ residual = hidden_states
350
+
351
+ hidden_states = self.input_layernorm(hidden_states)
352
+
353
+ # Self Attention
354
+ hidden_states, self_attn_weights = self.self_attn(
355
+ hidden_states=hidden_states,
356
+ attention_mask=attention_mask,
357
+ position_ids=position_ids,
358
+ past_key_value=past_key_value,
359
+ output_attentions=output_attentions,
360
+ use_cache=use_cache,
361
+ cache_position=cache_position,
362
+ position_embeddings=position_embeddings,
363
+ **kwargs,
364
+ )
365
+ hidden_states = residual + hidden_states
366
+
367
+ # Fully Connected
368
+ residual = hidden_states
369
+ hidden_states = self.post_attention_layernorm(hidden_states)
370
+ hidden_states = self.mlp(hidden_states)
371
+ hidden_states = residual + hidden_states
372
+
373
+ outputs = (hidden_states,)
374
+ if output_attentions:
375
+ outputs += (self_attn_weights,)
376
+
377
+ return outputs
378
+
379
+
380
+ class TriLMLinearPreTrainedModel(PreTrainedModel):
381
+ config_class = TriLMLinearConfig
382
+ base_model_prefix = "model"
383
+ supports_gradient_checkpointing = True
384
+ _no_split_modules = ["TriLMLinearDecoderLayer"]
385
+ _skip_keys_device_placement = ["past_key_values"]
386
+ _supports_flash_attn_2 = True
387
+ _supports_sdpa = True
388
+ _supports_flex_attn = True
389
+ _supports_cache_class = True
390
+ _supports_quantized_cache = True
391
+ _supports_static_cache = True
392
+ _supports_attention_backend = True
393
+
394
+ def _init_weights(self, module):
395
+ std = self.config.initializer_range
396
+ if isinstance(module, nn.Linear):
397
+ module.weight.data.normal_(mean=0.0, std=std)
398
+ if module.bias is not None:
399
+ module.bias.data.zero_()
400
+ elif isinstance(module, nn.Embedding):
401
+ module.weight.data.normal_(mean=0.0, std=std)
402
+ if module.padding_idx is not None:
403
+ module.weight.data[module.padding_idx].zero_()
404
+
405
+
406
+
407
+
408
+ class TriLMLinearModel(TriLMLinearPreTrainedModel):
409
+ """
410
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TriLMLinearDecoderLayer`]
411
+
412
+ Args:
413
+ config: TriLMLinearConfig
414
+ """
415
+
416
+ def __init__(self, config: TriLMLinearConfig):
417
+ super().__init__(config)
418
+ self.padding_idx = config.pad_token_id
419
+ self.vocab_size = config.vocab_size
420
+
421
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
422
+ self.layers = nn.ModuleList(
423
+ [TriLMLinearDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
424
+ )
425
+ self.norm = TriLMLinearRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
426
+ self.rotary_emb = TriLMLinearRotaryEmbedding(config=config)
427
+ self.gradient_checkpointing = False
428
+
429
+ # Initialize weights and apply final processing
430
+ self.post_init()
431
+
432
+ def get_input_embeddings(self):
433
+ return self.embed_tokens
434
+
435
+ def set_input_embeddings(self, value):
436
+ self.embed_tokens = value
437
+
438
+ def forward(
439
+ self,
440
+ input_ids: torch.LongTensor = None,
441
+ attention_mask: Optional[torch.Tensor] = None,
442
+ position_ids: Optional[torch.LongTensor] = None,
443
+ past_key_values: Optional[Cache] = None,
444
+ inputs_embeds: Optional[torch.FloatTensor] = None,
445
+ use_cache: Optional[bool] = None,
446
+ output_attentions: Optional[bool] = None,
447
+ output_hidden_states: Optional[bool] = None,
448
+ return_dict: Optional[bool] = None,
449
+ cache_position: Optional[torch.LongTensor] = None,
450
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
451
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
452
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
453
+ output_hidden_states = (
454
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
455
+ )
456
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
457
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
458
+
459
+ if (input_ids is None) ^ (inputs_embeds is not None):
460
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
461
+
462
+ if self.gradient_checkpointing and self.training and use_cache:
463
+ logger.warning_once(
464
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
465
+ )
466
+ use_cache = False
467
+
468
+ if inputs_embeds is None:
469
+ inputs_embeds = self.embed_tokens(input_ids)
470
+
471
+ if use_cache and past_key_values is None:
472
+ past_key_values = DynamicCache()
473
+
474
+ if cache_position is None:
475
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
476
+ cache_position = torch.arange(
477
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
478
+ )
479
+
480
+ if position_ids is None:
481
+ position_ids = cache_position.unsqueeze(0)
482
+
483
+ causal_mask = self._update_causal_mask(
484
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
485
+ )
486
+
487
+ hidden_states = inputs_embeds
488
+
489
+ # create position embeddings to be shared across the decoder layers
490
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
491
+
492
+ # decoder layers
493
+ all_hidden_states = () if output_hidden_states else None
494
+ all_self_attns = () if output_attentions else None
495
+
496
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
497
+ if output_hidden_states:
498
+ all_hidden_states += (hidden_states,)
499
+
500
+ if self.gradient_checkpointing and self.training:
501
+ layer_outputs = self._gradient_checkpointing_func(
502
+ decoder_layer.__call__,
503
+ hidden_states,
504
+ causal_mask,
505
+ position_ids,
506
+ past_key_values,
507
+ output_attentions,
508
+ use_cache,
509
+ cache_position,
510
+ position_embeddings,
511
+ )
512
+ else:
513
+ layer_outputs = decoder_layer(
514
+ hidden_states,
515
+ attention_mask=causal_mask,
516
+ position_ids=position_ids,
517
+ past_key_value=past_key_values,
518
+ output_attentions=output_attentions,
519
+ use_cache=use_cache,
520
+ cache_position=cache_position,
521
+ position_embeddings=position_embeddings,
522
+ **flash_attn_kwargs,
523
+ )
524
+
525
+ hidden_states = layer_outputs[0]
526
+
527
+ if output_attentions:
528
+ all_self_attns += (layer_outputs[1],)
529
+
530
+ hidden_states = self.norm(hidden_states)
531
+
532
+ # add hidden states from the last decoder layer
533
+ if output_hidden_states:
534
+ all_hidden_states += (hidden_states,)
535
+
536
+ output = BaseModelOutputWithPast(
537
+ last_hidden_state=hidden_states,
538
+ past_key_values=past_key_values if use_cache else None,
539
+ hidden_states=all_hidden_states,
540
+ attentions=all_self_attns,
541
+ )
542
+ return output if return_dict else output.to_tuple()
543
+
544
+ def _update_causal_mask(
545
+ self,
546
+ attention_mask: torch.Tensor,
547
+ input_tensor: torch.Tensor,
548
+ cache_position: torch.Tensor,
549
+ past_key_values: Cache,
550
+ output_attentions: bool,
551
+ ):
552
+ if self.config._attn_implementation == "flash_attention_2":
553
+ if attention_mask is not None and (attention_mask == 0.0).any():
554
+ return attention_mask
555
+ return None
556
+
557
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
558
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
559
+ # to infer the attention mask.
560
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
561
+ using_static_cache = isinstance(past_key_values, StaticCache)
562
+
563
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
564
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
565
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
566
+ attention_mask,
567
+ inputs_embeds=input_tensor,
568
+ past_key_values_length=past_seen_tokens,
569
+ is_training=self.training,
570
+ ):
571
+ return None
572
+
573
+ dtype, device = input_tensor.dtype, input_tensor.device
574
+ sequence_length = input_tensor.shape[1]
575
+ if using_static_cache:
576
+ target_length = past_key_values.get_max_cache_shape()
577
+ else:
578
+ target_length = (
579
+ attention_mask.shape[-1]
580
+ if isinstance(attention_mask, torch.Tensor)
581
+ else past_seen_tokens + sequence_length + 1
582
+ )
583
+
584
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
585
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
586
+ attention_mask,
587
+ sequence_length=sequence_length,
588
+ target_length=target_length,
589
+ dtype=dtype,
590
+ device=device,
591
+ cache_position=cache_position,
592
+ batch_size=input_tensor.shape[0],
593
+ )
594
+
595
+ if (
596
+ self.config._attn_implementation == "sdpa"
597
+ and attention_mask is not None
598
+ and attention_mask.device.type == "cuda"
599
+ and not output_attentions
600
+ ):
601
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
602
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
603
+ # Details: https://github.com/pytorch/pytorch/issues/110213
604
+ min_dtype = torch.finfo(dtype).min
605
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
606
+
607
+ return causal_mask
608
+
609
+ @staticmethod
610
+ def _prepare_4d_causal_attention_mask_with_cache_position(
611
+ attention_mask: torch.Tensor,
612
+ sequence_length: int,
613
+ target_length: int,
614
+ dtype: torch.dtype,
615
+ device: torch.device,
616
+ cache_position: torch.Tensor,
617
+ batch_size: int,
618
+ **kwargs,
619
+ ):
620
+ """
621
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
622
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
623
+
624
+ Args:
625
+ attention_mask (`torch.Tensor`):
626
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
627
+ `(batch_size, 1, query_length, key_value_length)`.
628
+ sequence_length (`int`):
629
+ The sequence length being processed.
630
+ target_length (`int`):
631
+ The target length: when generating with static cache, the mask should be as long as the static cache,
632
+ to account for the 0 padding, the part of the cache that is not filled yet.
633
+ dtype (`torch.dtype`):
634
+ The dtype to use for the 4D attention mask.
635
+ device (`torch.device`):
636
+ The device to plcae the 4D attention mask on.
637
+ cache_position (`torch.Tensor`):
638
+ Indices depicting the position of the input sequence tokens in the sequence.
639
+ batch_size (`torch.Tensor`):
640
+ Batch size.
641
+ """
642
+ if attention_mask is not None and attention_mask.dim() == 4:
643
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
644
+ causal_mask = attention_mask
645
+ else:
646
+ min_dtype = torch.finfo(dtype).min
647
+ causal_mask = torch.full(
648
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
649
+ )
650
+ if sequence_length != 1:
651
+ causal_mask = torch.triu(causal_mask, diagonal=1)
652
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
653
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
654
+ if attention_mask is not None:
655
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
656
+ mask_length = attention_mask.shape[-1]
657
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
658
+ padding_mask = padding_mask == 0
659
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
660
+ padding_mask, min_dtype
661
+ )
662
+
663
+ return causal_mask
664
+
665
+
666
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
667
+
668
+
669
+ class TriLMLinearForCausalLM(TriLMLinearPreTrainedModel, GenerationMixin):
670
+ _tied_weights_keys = ["lm_head.weight"]
671
+ _tp_plan = {"lm_head": "colwise_rep"}
672
+
673
+ def __init__(self, config):
674
+ super().__init__(config)
675
+ self.model = TriLMLinearModel(config)
676
+ self.vocab_size = config.vocab_size
677
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
678
+
679
+ # Initialize weights and apply final processing
680
+ self.post_init()
681
+
682
+ def get_input_embeddings(self):
683
+ return self.model.embed_tokens
684
+
685
+ def set_input_embeddings(self, value):
686
+ self.model.embed_tokens = value
687
+
688
+ def get_output_embeddings(self):
689
+ return self.lm_head
690
+
691
+ def set_output_embeddings(self, new_embeddings):
692
+ self.lm_head = new_embeddings
693
+
694
+ def set_decoder(self, decoder):
695
+ self.model = decoder
696
+
697
+ def get_decoder(self):
698
+ return self.model
699
+
700
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
701
+ def forward(
702
+ self,
703
+ input_ids: torch.LongTensor = None,
704
+ attention_mask: Optional[torch.Tensor] = None,
705
+ position_ids: Optional[torch.LongTensor] = None,
706
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
707
+ inputs_embeds: Optional[torch.FloatTensor] = None,
708
+ labels: Optional[torch.LongTensor] = None,
709
+ use_cache: Optional[bool] = None,
710
+ output_attentions: Optional[bool] = None,
711
+ output_hidden_states: Optional[bool] = None,
712
+ return_dict: Optional[bool] = None,
713
+ cache_position: Optional[torch.LongTensor] = None,
714
+ logits_to_keep: Union[int, torch.Tensor] = 0,
715
+ **kwargs: Unpack[KwargsForCausalLM],
716
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
717
+ r"""
718
+ Args:
719
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
720
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
721
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
722
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
723
+
724
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
725
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
726
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
727
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
728
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
729
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
730
+
731
+ Returns:
732
+
733
+ Example:
734
+
735
+ ```python
736
+ >>> from transformers import AutoTokenizer, TriLMLinearForCausalLM
737
+
738
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
739
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
740
+
741
+ >>> # Generate
742
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
743
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
744
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
745
+ ```"""
746
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
747
+ output_hidden_states = (
748
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
749
+ )
750
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
751
+
752
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
753
+ outputs = self.model(
754
+ input_ids=input_ids,
755
+ attention_mask=attention_mask,
756
+ position_ids=position_ids,
757
+ past_key_values=past_key_values,
758
+ inputs_embeds=inputs_embeds,
759
+ use_cache=use_cache,
760
+ output_attentions=output_attentions,
761
+ output_hidden_states=output_hidden_states,
762
+ return_dict=return_dict,
763
+ cache_position=cache_position,
764
+ **kwargs,
765
+ )
766
+
767
+ hidden_states = outputs[0]
768
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
769
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
770
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
771
+
772
+ loss = None
773
+ if labels is not None:
774
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
775
+
776
+ if not return_dict:
777
+ output = (logits,) + outputs[1:]
778
+ return (loss,) + output if loss is not None else output
779
+
780
+ return CausalLMOutputWithPast(
781
+ loss=loss,
782
+ logits=logits,
783
+ past_key_values=outputs.past_key_values,
784
+ hidden_states=outputs.hidden_states,
785
+ attentions=outputs.attentions,
786
+ )
787
+
788
+
789
+ class TriLMLinearForSequenceClassification(TriLMLinearPreTrainedModel):
790
+ def __init__(self, config):
791
+ super().__init__(config)
792
+ self.num_labels = config.num_labels
793
+ self.model = TriLMLinearModel(config)
794
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
795
+
796
+ # Initialize weights and apply final processing
797
+ self.post_init()
798
+
799
+ def get_input_embeddings(self):
800
+ return self.model.embed_tokens
801
+
802
+ def set_input_embeddings(self, value):
803
+ self.model.embed_tokens = value
804
+
805
+ def forward(
806
+ self,
807
+ input_ids: Optional[torch.LongTensor] = None,
808
+ attention_mask: Optional[torch.Tensor] = None,
809
+ position_ids: Optional[torch.LongTensor] = None,
810
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
811
+ inputs_embeds: Optional[torch.FloatTensor] = None,
812
+ labels: Optional[torch.LongTensor] = None,
813
+ use_cache: Optional[bool] = None,
814
+ output_attentions: Optional[bool] = None,
815
+ output_hidden_states: Optional[bool] = None,
816
+ return_dict: Optional[bool] = None,
817
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
818
+ r"""
819
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
820
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
821
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
822
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
823
+ """
824
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
825
+
826
+ transformer_outputs = self.model(
827
+ input_ids,
828
+ attention_mask=attention_mask,
829
+ position_ids=position_ids,
830
+ past_key_values=past_key_values,
831
+ inputs_embeds=inputs_embeds,
832
+ use_cache=use_cache,
833
+ output_attentions=output_attentions,
834
+ output_hidden_states=output_hidden_states,
835
+ return_dict=return_dict,
836
+ )
837
+ hidden_states = transformer_outputs[0]
838
+ logits = self.score(hidden_states)
839
+
840
+ if input_ids is not None:
841
+ batch_size = input_ids.shape[0]
842
+ else:
843
+ batch_size = inputs_embeds.shape[0]
844
+
845
+ if self.config.pad_token_id is None and batch_size != 1:
846
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
847
+ if self.config.pad_token_id is None:
848
+ sequence_lengths = -1
849
+ else:
850
+ if input_ids is not None:
851
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
852
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
853
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
854
+ sequence_lengths = sequence_lengths.to(logits.device)
855
+ else:
856
+ sequence_lengths = -1
857
+
858
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
859
+
860
+ loss = None
861
+ if labels is not None:
862
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
863
+
864
+ if not return_dict:
865
+ output = (pooled_logits,) + transformer_outputs[1:]
866
+ return ((loss,) + output) if loss is not None else output
867
+
868
+ return SequenceClassifierOutputWithPast(
869
+ loss=loss,
870
+ logits=pooled_logits,
871
+ past_key_values=transformer_outputs.past_key_values,
872
+ hidden_states=transformer_outputs.hidden_states,
873
+ attentions=transformer_outputs.attentions,
874
+ )
875
+
876
+
877
+ class TriLMLinearForQuestionAnswering(TriLMLinearPreTrainedModel):
878
+ base_model_prefix = "transformer"
879
+
880
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TriLMLinear
881
+ def __init__(self, config):
882
+ super().__init__(config)
883
+ self.transformer = TriLMLinearModel(config)
884
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
885
+
886
+ # Initialize weights and apply final processing
887
+ self.post_init()
888
+
889
+ def get_input_embeddings(self):
890
+ return self.transformer.embed_tokens
891
+
892
+ def set_input_embeddings(self, value):
893
+ self.transformer.embed_tokens = value
894
+
895
+ def forward(
896
+ self,
897
+ input_ids: Optional[torch.LongTensor] = None,
898
+ attention_mask: Optional[torch.FloatTensor] = None,
899
+ position_ids: Optional[torch.LongTensor] = None,
900
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
901
+ inputs_embeds: Optional[torch.FloatTensor] = None,
902
+ start_positions: Optional[torch.LongTensor] = None,
903
+ end_positions: Optional[torch.LongTensor] = None,
904
+ output_attentions: Optional[bool] = None,
905
+ output_hidden_states: Optional[bool] = None,
906
+ return_dict: Optional[bool] = None,
907
+ **kwargs,
908
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
909
+ r"""
910
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
911
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
912
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
913
+ are not taken into account for computing the loss.
914
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
915
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
916
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
917
+ are not taken into account for computing the loss.
918
+ """
919
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
920
+
921
+ outputs = self.transformer(
922
+ input_ids,
923
+ attention_mask=attention_mask,
924
+ position_ids=position_ids,
925
+ past_key_values=past_key_values,
926
+ inputs_embeds=inputs_embeds,
927
+ output_attentions=output_attentions,
928
+ output_hidden_states=output_hidden_states,
929
+ return_dict=return_dict,
930
+ )
931
+
932
+ sequence_output = outputs[0]
933
+
934
+ logits = self.qa_outputs(sequence_output)
935
+ start_logits, end_logits = logits.split(1, dim=-1)
936
+ start_logits = start_logits.squeeze(-1).contiguous()
937
+ end_logits = end_logits.squeeze(-1).contiguous()
938
+
939
+ loss = None
940
+ if start_positions is not None and end_positions is not None:
941
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
942
+
943
+ if not return_dict:
944
+ output = (start_logits, end_logits) + outputs[2:]
945
+ return ((loss,) + output) if loss is not None else output
946
+
947
+ return QuestionAnsweringModelOutput(
948
+ loss=loss,
949
+ start_logits=start_logits,
950
+ end_logits=end_logits,
951
+ hidden_states=outputs.hidden_states,
952
+ attentions=outputs.attentions,
953
+ )
954
+
955
+ class TriLMLinearForTokenClassification(TriLMLinearPreTrainedModel):
956
+ def __init__(self, config):
957
+ super().__init__(config)
958
+ self.num_labels = config.num_labels
959
+ self.model = TriLMLinearModel(config)
960
+ if getattr(config, "classifier_dropout", None) is not None:
961
+ classifier_dropout = config.classifier_dropout
962
+ elif getattr(config, "hidden_dropout", None) is not None:
963
+ classifier_dropout = config.hidden_dropout
964
+ else:
965
+ classifier_dropout = 0.1
966
+ self.dropout = nn.Dropout(classifier_dropout)
967
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
968
+
969
+ # Initialize weights and apply final processing
970
+ self.post_init()
971
+
972
+ def get_input_embeddings(self):
973
+ return self.model.embed_tokens
974
+
975
+ def set_input_embeddings(self, value):
976
+ self.model.embed_tokens = value
977
+
978
+ def forward(
979
+ self,
980
+ input_ids: Optional[torch.LongTensor] = None,
981
+ attention_mask: Optional[torch.Tensor] = None,
982
+ position_ids: Optional[torch.LongTensor] = None,
983
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
984
+ inputs_embeds: Optional[torch.FloatTensor] = None,
985
+ labels: Optional[torch.LongTensor] = None,
986
+ use_cache: Optional[bool] = None,
987
+ output_attentions: Optional[bool] = None,
988
+ output_hidden_states: Optional[bool] = None,
989
+ return_dict: Optional[bool] = None,
990
+ ) -> Union[Tuple, TokenClassifierOutput]:
991
+ r"""
992
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
993
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
994
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
995
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
996
+ """
997
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
998
+
999
+ outputs = self.model(
1000
+ input_ids,
1001
+ attention_mask=attention_mask,
1002
+ position_ids=position_ids,
1003
+ past_key_values=past_key_values,
1004
+ inputs_embeds=inputs_embeds,
1005
+ use_cache=use_cache,
1006
+ output_attentions=output_attentions,
1007
+ output_hidden_states=output_hidden_states,
1008
+ return_dict=return_dict,
1009
+ )
1010
+ sequence_output = outputs[0]
1011
+ sequence_output = self.dropout(sequence_output)
1012
+ logits = self.score(sequence_output)
1013
+
1014
+ loss = None
1015
+ if labels is not None:
1016
+ loss = self.loss_function(logits, labels, self.config)
1017
+
1018
+ if not return_dict:
1019
+ output = (logits,) + outputs[2:]
1020
+ return ((loss,) + output) if loss is not None else output
1021
+
1022
+ return TokenClassifierOutput(
1023
+ loss=loss,
1024
+ logits=logits,
1025
+ hidden_states=outputs.hidden_states,
1026
+ attentions=outputs.attentions,
1027
+ )
1028
+
1029
+
1030
+ __all__ = [
1031
+ "TriLMLinearForCausalLM",
1032
+ "TriLMLinearModel",
1033
+ "TriLMLinearPreTrainedModel",
1034
+ "TriLMLinearForSequenceClassification",
1035
+ "TriLMLinearForQuestionAnswering",
1036
+ "TriLMLinearForTokenClassification",
1037
+ ]