# ############################################################################ # Model: E2E ASR with attention-based ASR # Encoder: CRDNN model # Decoder: GRU + beamsearch + RNNLM # Tokens: BPE with unigram # Authors: Ju-Chieh Chou, Mirco Ravanelli, Abdel Heba, Peter Plantinga 2020 # ############################################################################ # Feature parameters sample_rate: 16000 n_fft: 400 n_mels: 40 # Model parameters activation: !name:torch.nn.LeakyReLU dropout: 0.15 cnn_blocks: 2 cnn_channels: (128, 256) inter_layer_pooling_size: (2, 2) cnn_kernelsize: (3, 3) time_pooling_size: 4 rnn_class: !name:speechbrain.nnet.RNN.LSTM rnn_layers: 4 rnn_neurons: 1024 rnn_bidirectional: True dnn_blocks: 2 dnn_neurons: 512 emb_size: 128 dec_neurons: 1024 output_neurons: 1000 # index(blank/eos/bos) = 0 blank_index: 0 # Decoding parameters bos_index: 0 eos_index: 0 min_decode_ratio: 0.0 max_decode_ratio: 1.0 beam_size: 80 eos_threshold: 1.5 using_max_attn_shift: True max_attn_shift: 240 lm_weight: 0.50 coverage_penalty: 1.5 temperature: 1.25 temperature_lm: 1.25 normalizer: !new:speechbrain.processing.features.InputNormalization norm_type: global compute_features: !new:speechbrain.lobes.features.Fbank sample_rate: !ref n_fft: !ref n_mels: !ref enc: !new:speechbrain.lobes.models.CRDNN.CRDNN input_shape: [null, null, !ref ] activation: !ref dropout: !ref cnn_blocks: !ref cnn_channels: !ref cnn_kernelsize: !ref inter_layer_pooling_size: !ref time_pooling: True using_2d_pooling: False time_pooling_size: !ref rnn_class: !ref rnn_layers: !ref rnn_neurons: !ref rnn_bidirectional: !ref rnn_re_init: True dnn_blocks: !ref dnn_neurons: !ref emb: !new:speechbrain.nnet.embedding.Embedding num_embeddings: !ref embedding_dim: !ref dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder enc_dim: !ref input_size: !ref rnn_type: gru attn_type: location hidden_size: !ref attn_dim: 1024 num_layers: 1 scaling: 1.0 channels: 10 kernel_size: 100 re_init: True dropout: !ref ctc_lin: !new:speechbrain.nnet.linear.Linear input_size: !ref n_neurons: !ref seq_lin: !new:speechbrain.nnet.linear.Linear input_size: !ref n_neurons: !ref log_softmax: !new:speechbrain.nnet.activations.Softmax apply_log: True lm_model: !new:speechbrain.lobes.models.RNNLM.RNNLM output_neurons: !ref embedding_dim: !ref activation: !name:torch.nn.LeakyReLU dropout: 0.0 rnn_layers: 2 rnn_neurons: 2048 dnn_blocks: 1 dnn_neurons: 512 return_hidden: True # For inference tokenizer: !new:sentencepiece.SentencePieceProcessor asr_model: !new:torch.nn.ModuleList - [!ref , !ref , !ref , !ref , !ref ] # We compose the inference (encoder) pipeline. encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential input_shape: [null, null, !ref ] compute_features: !ref normalize: !ref model: !ref decoder: !new:speechbrain.decoders.S2SRNNBeamSearchLM embedding: !ref decoder: !ref linear: !ref language_model: !ref bos_index: !ref eos_index: !ref min_decode_ratio: !ref max_decode_ratio: !ref beam_size: !ref eos_threshold: !ref using_max_attn_shift: !ref max_attn_shift: !ref coverage_penalty: !ref lm_weight: !ref temperature: !ref temperature_lm: !ref modules: normalizer: !ref encoder: !ref decoder: !ref lm_model: !ref pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer loadables: asr: !ref lm: !ref tokenizer: !ref