File size: 3,709 Bytes
7ff95b4
 
 
 
 
 
 
6bbde74
7ff95b4
6fb11ea
7ff95b4
 
 
 
 
 
 
 
963d84a
 
 
9d47cd4
7ff95b4
 
 
6bbde74
fc0618a
 
7ff95b4
 
 
974c646
7ff95b4
 
 
6bbde74
f5cbbef
7ff95b4
f5cbbef
 
6bbde74
7ff95b4
 
 
 
 
 
 
2c2d948
7ff95b4
 
 
 
 
19baea8
7ff95b4
 
6b8b275
7ff95b4
6b8b275
49c8ad1
7ff95b4
 
db19853
 
7ff95b4
604921e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1131a
 
 
8b8242b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f0f4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
language: "en"
thumbnail:
tags:
- ASR
- CTC
- Attention
- Transformer
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- librispeech
metrics:
- wer
- cer
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# Transformer for LibriSpeech (with Transformer LM)

This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on LibriSpeech (EN) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). 
The performance of the model is the following:

| Release | Test clean WER | Test other WER | GPUs |
|:-------------:|:--------------:|:--------------:|:--------:|
| 05-03-21 | 2.46 | 5.86 | 2xV100 32GB |

## Pipeline description

This ASR system is composed of 3 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions of LibriSpeech.
- Neural language model (Transformer LM) trained on the full 10M words dataset.
- Acoustic model made of a transformer encoder and a joint decoder with CTC +
transformer. Hence, the decoding also incorporates the CTC probabilities.


## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Transcribing your own audio files (in English)

```python
from speechbrain.pretrained import EncoderDecoderASR

asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-transformer-transformerlm-librispeech", savedir="pretrained_models/asr-transformer-transformerlm-librispeech")
asr_model.transcribe_file("speechbrain/asr-transformer-transformerlm-librispeech/example.wav")

```
### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (Commit hash: 'f73fcc35').
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```bash
cd recipes/LibriSpeech/ASR/transformer
python train.py hparams/transformer.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1ZudxqMWb8VNCJKvY2Ws5oNY3WI1To0I7?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/


# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.


```bibtex
@misc{speechbrain,
  title={SpeechBrain: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS}
}
```