poonehmousavi
commited on
Commit
·
092d812
1
Parent(s):
970c9c3
Upload 3 files
Browse files- custom_interface.py +127 -0
- hparams.yaml +77 -0
- whisper.ckpt +3 -0
custom_interface.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from speechbrain.pretrained import Pretrained
|
3 |
+
|
4 |
+
class WhisperASR(Pretrained):
|
5 |
+
"""A ready-to-use Whisper ASR model
|
6 |
+
|
7 |
+
The class can be used to run only the encoder (encode()) to run the entire encoder-decoder whisper model
|
8 |
+
(transcribe()) to transcribe speech. The given YAML must contains the fields
|
9 |
+
specified in the *_NEEDED[] lists.
|
10 |
+
|
11 |
+
Example
|
12 |
+
-------
|
13 |
+
>>> from speechbrain.pretrained.interfaces import foreign_class
|
14 |
+
>>> tmpdir = getfixture("tmpdir")
|
15 |
+
>>> asr_model = foreign_class(source="hf",
|
16 |
+
... pymodule_file="custom_interface.py",
|
17 |
+
... classname="WhisperASR",
|
18 |
+
... hparams_file='hparams.yaml',
|
19 |
+
... savedir=tmpdir,
|
20 |
+
... )
|
21 |
+
>>> asr_model.transcribe_file("tests/samples/example2.wav")
|
22 |
+
"""
|
23 |
+
|
24 |
+
HPARAMS_NEEDED = ['language']
|
25 |
+
MODULES_NEEDED = ["whisper", "decoder"]
|
26 |
+
|
27 |
+
def __init__(self, *args, **kwargs):
|
28 |
+
super().__init__(*args, **kwargs)
|
29 |
+
self.tokenizer = self.hparams.whisper.tokenizer
|
30 |
+
self.tokenizer.set_prefix_tokens(self.hparams.language, "transcribe", False)
|
31 |
+
self.hparams.decoder.set_decoder_input_tokens(
|
32 |
+
self.tokenizer.prefix_tokens
|
33 |
+
)
|
34 |
+
|
35 |
+
def transcribe_file(self, path):
|
36 |
+
"""Transcribes the given audiofile into a sequence of words.
|
37 |
+
|
38 |
+
Arguments
|
39 |
+
---------
|
40 |
+
path : str
|
41 |
+
Path to audio file which to transcribe.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
str
|
46 |
+
The audiofile transcription produced by this ASR system.
|
47 |
+
"""
|
48 |
+
waveform = self.load_audio(path)
|
49 |
+
# Fake a batch:
|
50 |
+
batch = waveform.unsqueeze(0)
|
51 |
+
rel_length = torch.tensor([1.0])
|
52 |
+
predicted_words, predicted_tokens = self.transcribe_batch(
|
53 |
+
batch, rel_length
|
54 |
+
)
|
55 |
+
return predicted_words
|
56 |
+
|
57 |
+
def encode_batch(self, wavs, wav_lens):
|
58 |
+
"""Encodes the input audio into a sequence of hidden states
|
59 |
+
|
60 |
+
The waveforms should already be in the model's desired format.
|
61 |
+
You can call:
|
62 |
+
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
63 |
+
to get a correctly converted signal in most cases.
|
64 |
+
|
65 |
+
Arguments
|
66 |
+
---------
|
67 |
+
wavs : torch.tensor
|
68 |
+
Batch of waveforms [batch, time, channels].
|
69 |
+
wav_lens : torch.tensor
|
70 |
+
Lengths of the waveforms relative to the longest one in the
|
71 |
+
batch, tensor of shape [batch]. The longest one should have
|
72 |
+
relative length 1.0 and others len(waveform) / max_length.
|
73 |
+
Used for ignoring padding.
|
74 |
+
|
75 |
+
Returns
|
76 |
+
-------
|
77 |
+
torch.tensor
|
78 |
+
The encoded batch
|
79 |
+
"""
|
80 |
+
wavs = wavs.float()
|
81 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
82 |
+
encoder_out = self.mods.whisper.forward_encoder(wavs)
|
83 |
+
return encoder_out
|
84 |
+
|
85 |
+
def transcribe_batch(self, wavs, wav_lens):
|
86 |
+
"""Transcribes the input audio into a sequence of words
|
87 |
+
|
88 |
+
The waveforms should already be in the model's desired format.
|
89 |
+
You can call:
|
90 |
+
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
91 |
+
to get a correctly converted signal in most cases.
|
92 |
+
|
93 |
+
Arguments
|
94 |
+
---------
|
95 |
+
wavs : torch.tensor
|
96 |
+
Batch of waveforms [batch, time, channels].
|
97 |
+
wav_lens : torch.tensor
|
98 |
+
Lengths of the waveforms relative to the longest one in the
|
99 |
+
batch, tensor of shape [batch]. The longest one should have
|
100 |
+
relative length 1.0 and others len(waveform) / max_length.
|
101 |
+
Used for ignoring padding.
|
102 |
+
|
103 |
+
Returns
|
104 |
+
-------
|
105 |
+
list
|
106 |
+
Each waveform in the batch transcribed.
|
107 |
+
tensor
|
108 |
+
Each predicted token id.
|
109 |
+
"""
|
110 |
+
with torch.no_grad():
|
111 |
+
wav_lens = wav_lens.to(self.device)
|
112 |
+
encoder_out = self.encode_batch(wavs, wav_lens)
|
113 |
+
predicted_tokens, scores = self.mods.decoder(encoder_out, wav_lens)
|
114 |
+
predicted_words = self.tokenizer.batch_decode(
|
115 |
+
predicted_tokens, skip_special_tokens=True)
|
116 |
+
if self.hparams.normalized_transcripts:
|
117 |
+
predicted_words = [
|
118 |
+
self.tokenizer._normalize(text).split(" ")
|
119 |
+
for text in predicted_words
|
120 |
+
]
|
121 |
+
|
122 |
+
|
123 |
+
return predicted_words, predicted_tokens
|
124 |
+
|
125 |
+
def forward(self, wavs, wav_lens):
|
126 |
+
"""Runs full transcription - note: no gradients through decoding"""
|
127 |
+
return self.transcribe_batch(wavs, wav_lens)
|
hparams.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ################################
|
2 |
+
# Model: Whisper (Encoder-Decoder) + NLL
|
3 |
+
# Augmentation: TimeDomainSpecAugment
|
4 |
+
# Authors: Pooneh Mousavi 2022
|
5 |
+
# ################################
|
6 |
+
|
7 |
+
|
8 |
+
# URL for the biggest Fairseq english whisper model.
|
9 |
+
whisper_hub: openai/whisper-large-v2
|
10 |
+
|
11 |
+
# Normalize inputs with
|
12 |
+
# the same normalization done in the paper. Refer to Appendix C for further information.
|
13 |
+
normalized_transcripts: True
|
14 |
+
|
15 |
+
|
16 |
+
language: mongolian
|
17 |
+
|
18 |
+
auto_mix_prec: False
|
19 |
+
sample_rate: 16000
|
20 |
+
|
21 |
+
# These values are only used for the searchers.
|
22 |
+
# They needs to be hardcoded and should not be changed with Whisper.
|
23 |
+
# They are used as part of the searching process.
|
24 |
+
# The bos token of the searcher will be timestamp_index
|
25 |
+
# and will be concatenated with the bos, language and task tokens.
|
26 |
+
timestamp_index: 50363
|
27 |
+
eos_index: 50257
|
28 |
+
bos_index: 50258
|
29 |
+
|
30 |
+
# Decoding parameters
|
31 |
+
min_decode_ratio: 0.0
|
32 |
+
max_decode_ratio: 0.1
|
33 |
+
test_beam_size: 8
|
34 |
+
|
35 |
+
# Model parameters
|
36 |
+
freeze_whisper: True
|
37 |
+
freeze_encoder: True
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
whisper: !new:speechbrain.lobes.models.huggingface_whisper.HuggingFaceWhisper
|
42 |
+
source: !ref <whisper_hub>
|
43 |
+
freeze: !ref <freeze_whisper>
|
44 |
+
freeze_encoder: !ref <freeze_encoder>
|
45 |
+
save_path: whisper_checkpoints
|
46 |
+
encoder_only: False
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
decoder: !new:speechbrain.decoders.seq2seq.S2SWhisperGreedySearch
|
51 |
+
model: !ref <whisper>
|
52 |
+
bos_index: !ref <timestamp_index>
|
53 |
+
eos_index: !ref <eos_index>
|
54 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
55 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
56 |
+
|
57 |
+
# test_beam_searcher: !new:speechbrain.decoders.seq2seq.S2SWhisperBeamSearch
|
58 |
+
# module: [!ref <whisper>]
|
59 |
+
# bos_index: !ref <timestamp_index>
|
60 |
+
# eos_index: !ref <eos_index>
|
61 |
+
# min_decode_ratio: !ref <min_decode_ratio>
|
62 |
+
# max_decode_ratio: !ref <max_decode_ratio>
|
63 |
+
# beam_size: !ref <test_beam_size>
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
modules:
|
70 |
+
whisper: !ref <whisper>
|
71 |
+
decoder: !ref <decoder>
|
72 |
+
|
73 |
+
|
74 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
75 |
+
loadables:
|
76 |
+
whisper: !ref <whisper>
|
77 |
+
|
whisper.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6230026278db2e8f4cf6a49c6179bd73e1d3e3cebd0202f4615bab830029f4c5
|
3 |
+
size 6173767281
|