poonehmousavi commited on
Commit
4c90e10
1 Parent(s): 2c7daf9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -31,7 +31,7 @@ model-index:
31
  metrics:
32
  - name: Test WER
33
  type: wer
34
- value: '12.51'
35
  ---
36
 
37
  <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=medium" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
@@ -48,7 +48,7 @@ The performance of the model is the following:
48
 
49
  | Release | Test CER | Test WER | GPUs |
50
  |:-------------:|:--------------:|:--------------:| :--------:|
51
- | 1-08-23 | 5.82 | 12.51 | 1xV100 32GB |
52
 
53
  ## Pipeline description
54
 
@@ -106,7 +106,7 @@ cd recipes/CommonVoice/ASR/transformer/
106
  python train_with_whisper.py hparams/train_hi_hf_whisper.yaml --data_folder=your_data_folder
107
  ```
108
 
109
- You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/11PKCsyIE703mmDv6n6n_UnD0bUgMPbg_?usp=share_link).
110
 
111
  ### Limitations
112
  The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
 
31
  metrics:
32
  - name: Test WER
33
  type: wer
34
+ value: '17.04'
35
  ---
36
 
37
  <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=medium" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
 
48
 
49
  | Release | Test CER | Test WER | GPUs |
50
  |:-------------:|:--------------:|:--------------:| :--------:|
51
+ | 1-08-23 | 8.16 | 17.04 | 1xV100 32GB |
52
 
53
  ## Pipeline description
54
 
 
106
  python train_with_whisper.py hparams/train_hi_hf_whisper.yaml --data_folder=your_data_folder
107
  ```
108
 
109
+ You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/z9vriyy3i6xqvif/AAB7ql-40yWTjKEQJiuhYUr5a?dl=0).
110
 
111
  ### Limitations
112
  The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.