--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan metrics: - name: Accuracy type: accuracy value: 0.65 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4484 - Accuracy: 0.65 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2604 | 1.0 | 113 | 2.2157 | 0.38 | | 1.972 | 2.0 | 226 | 1.9740 | 0.45 | | 1.8073 | 3.0 | 339 | 1.7988 | 0.54 | | 1.6946 | 4.0 | 452 | 1.6666 | 0.64 | | 1.582 | 5.0 | 565 | 1.5732 | 0.61 | | 1.6468 | 6.0 | 678 | 1.4905 | 0.65 | | 1.4905 | 7.0 | 791 | 1.4661 | 0.65 | | 1.4801 | 8.0 | 904 | 1.4484 | 0.65 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0