srikarvar commited on
Commit
a22076c
1 Parent(s): 3ebc4a1

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: srikarvar/fine_tuned_model_5
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - cosine_accuracy_threshold
7
+ - cosine_f1
8
+ - cosine_f1_threshold
9
+ - cosine_precision
10
+ - cosine_recall
11
+ - cosine_ap
12
+ - dot_accuracy
13
+ - dot_accuracy_threshold
14
+ - dot_f1
15
+ - dot_f1_threshold
16
+ - dot_precision
17
+ - dot_recall
18
+ - dot_ap
19
+ - manhattan_accuracy
20
+ - manhattan_accuracy_threshold
21
+ - manhattan_f1
22
+ - manhattan_f1_threshold
23
+ - manhattan_precision
24
+ - manhattan_recall
25
+ - manhattan_ap
26
+ - euclidean_accuracy
27
+ - euclidean_accuracy_threshold
28
+ - euclidean_f1
29
+ - euclidean_f1_threshold
30
+ - euclidean_precision
31
+ - euclidean_recall
32
+ - euclidean_ap
33
+ - max_accuracy
34
+ - max_accuracy_threshold
35
+ - max_f1
36
+ - max_f1_threshold
37
+ - max_precision
38
+ - max_recall
39
+ - max_ap
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:560
47
+ - loss:OnlineContrastiveLoss
48
+ widget:
49
+ - source_sentence: The `Garage` class has a `to_services` method which is used to
50
+ transform tasks into a list of `ServiceRecord` objects that are scheduled.
51
+ sentences:
52
+ - The `to_services` method in the Garage class is used to convert Garage tasks to
53
+ a list of scheduled `ServiceRecord` objects.
54
+ - It returns a `Recipe` for the specified serving size.
55
+ - The AI community is a group of individuals who collaborate on models, datasets,
56
+ and tools to advance artificial intelligence research.
57
+ - source_sentence: The main version of the guide contains the INSTALLATION page. Click
58
+ the link to be directed there.
59
+ sentences:
60
+ - You can bake bread by following the Bake bread tutorial.
61
+ - The base class for documents generated from a data stream is StreamBasedBuilder.
62
+ - You can find the INSTALLATION page in the main version of the guide. Click on
63
+ the provided link to redirect to the main version.
64
+ - source_sentence: A major distinction between a ProductList and an InventoryList
65
+ is that a ProductList allows for random access to the items, while an InventoryList
66
+ updates gradually as it is navigated.
67
+ sentences:
68
+ - The how-to guides for the platform include Setup, Processing, Streaming, TensorFlow
69
+ integration, PyTorch integration, Cache management, Cloud storage, Search index,
70
+ Analytics, and Data Pipelines.
71
+ - 'Yes, there is a tutorial for analyzing stock market data. You can find it at
72
+ the link provided: /docs/stocks/v2.10.0/data_analysis.'
73
+ - The main difference between a ProductList and an InventoryList is that a ProductList
74
+ provides random access to the items, while an InventoryList updates progressively
75
+ as you browse the list.
76
+ - source_sentence: ImageFolder is a dataset builder that eliminates the need for coding
77
+ to quickly load a dataset with thousands of image files. It will automatically
78
+ incorporate any extra data such as resolution, format, or tags, provided that
79
+ it is included in a metadata file (metadata.csv/metadata.jsonl).
80
+ sentences:
81
+ - The function `calc_and_sum` returns the calculated value and sum.
82
+ - Some examples of supported network drives are Network File System (NFS), Server
83
+ Message Block (SMB), and WebDAV.
84
+ - ImageFolder is a dataset builder designed to quickly load an image dataset with
85
+ several thousand image files without requiring you to write any code. It automatically
86
+ loads any additional information about your dataset, such as image resolution,
87
+ format, or image tags, as long as you include this information in a metadata file
88
+ (metadata.csv/metadata.jsonl).
89
+ - source_sentence: The `num_services` method gives the quantity of services in the
90
+ garage.
91
+ sentences:
92
+ - A signature in the sales database is a unique identifier for a transaction that
93
+ is updated every time a change is made. It is computed by combining the previous
94
+ signature and a hash of the latest update applied.
95
+ - The `num_services` method returns the number of services in the garage.
96
+ - It returns the number of entries in the dataset.
97
+ model-index:
98
+ - name: SentenceTransformer based on srikarvar/fine_tuned_model_5
99
+ results:
100
+ - task:
101
+ type: binary-classification
102
+ name: Binary Classification
103
+ dataset:
104
+ name: pair class dev
105
+ type: pair-class-dev
106
+ metrics:
107
+ - type: cosine_accuracy
108
+ value: 0.9821428571428571
109
+ name: Cosine Accuracy
110
+ - type: cosine_accuracy_threshold
111
+ value: 0.9922685623168945
112
+ name: Cosine Accuracy Threshold
113
+ - type: cosine_f1
114
+ value: 0.9909909909909909
115
+ name: Cosine F1
116
+ - type: cosine_f1_threshold
117
+ value: 0.9922685623168945
118
+ name: Cosine F1 Threshold
119
+ - type: cosine_precision
120
+ value: 1.0
121
+ name: Cosine Precision
122
+ - type: cosine_recall
123
+ value: 0.9821428571428571
124
+ name: Cosine Recall
125
+ - type: cosine_ap
126
+ value: 1.0
127
+ name: Cosine Ap
128
+ - type: dot_accuracy
129
+ value: 0.9821428571428571
130
+ name: Dot Accuracy
131
+ - type: dot_accuracy_threshold
132
+ value: 0.9922685623168945
133
+ name: Dot Accuracy Threshold
134
+ - type: dot_f1
135
+ value: 0.9909909909909909
136
+ name: Dot F1
137
+ - type: dot_f1_threshold
138
+ value: 0.9922685623168945
139
+ name: Dot F1 Threshold
140
+ - type: dot_precision
141
+ value: 1.0
142
+ name: Dot Precision
143
+ - type: dot_recall
144
+ value: 0.9821428571428571
145
+ name: Dot Recall
146
+ - type: dot_ap
147
+ value: 1.0
148
+ name: Dot Ap
149
+ - type: manhattan_accuracy
150
+ value: 0.9821428571428571
151
+ name: Manhattan Accuracy
152
+ - type: manhattan_accuracy_threshold
153
+ value: 1.8805665969848633
154
+ name: Manhattan Accuracy Threshold
155
+ - type: manhattan_f1
156
+ value: 0.9909909909909909
157
+ name: Manhattan F1
158
+ - type: manhattan_f1_threshold
159
+ value: 1.8805665969848633
160
+ name: Manhattan F1 Threshold
161
+ - type: manhattan_precision
162
+ value: 1.0
163
+ name: Manhattan Precision
164
+ - type: manhattan_recall
165
+ value: 0.9821428571428571
166
+ name: Manhattan Recall
167
+ - type: manhattan_ap
168
+ value: 1.0
169
+ name: Manhattan Ap
170
+ - type: euclidean_accuracy
171
+ value: 0.9821428571428571
172
+ name: Euclidean Accuracy
173
+ - type: euclidean_accuracy_threshold
174
+ value: 0.12164457887411118
175
+ name: Euclidean Accuracy Threshold
176
+ - type: euclidean_f1
177
+ value: 0.9909909909909909
178
+ name: Euclidean F1
179
+ - type: euclidean_f1_threshold
180
+ value: 0.12164457887411118
181
+ name: Euclidean F1 Threshold
182
+ - type: euclidean_precision
183
+ value: 1.0
184
+ name: Euclidean Precision
185
+ - type: euclidean_recall
186
+ value: 0.9821428571428571
187
+ name: Euclidean Recall
188
+ - type: euclidean_ap
189
+ value: 1.0
190
+ name: Euclidean Ap
191
+ - type: max_accuracy
192
+ value: 0.9821428571428571
193
+ name: Max Accuracy
194
+ - type: max_accuracy_threshold
195
+ value: 1.8805665969848633
196
+ name: Max Accuracy Threshold
197
+ - type: max_f1
198
+ value: 0.9909909909909909
199
+ name: Max F1
200
+ - type: max_f1_threshold
201
+ value: 1.8805665969848633
202
+ name: Max F1 Threshold
203
+ - type: max_precision
204
+ value: 1.0
205
+ name: Max Precision
206
+ - type: max_recall
207
+ value: 0.9821428571428571
208
+ name: Max Recall
209
+ - type: max_ap
210
+ value: 1.0
211
+ name: Max Ap
212
+ - task:
213
+ type: binary-classification
214
+ name: Binary Classification
215
+ dataset:
216
+ name: pair class test
217
+ type: pair-class-test
218
+ metrics:
219
+ - type: cosine_accuracy
220
+ value: 0.9821428571428571
221
+ name: Cosine Accuracy
222
+ - type: cosine_accuracy_threshold
223
+ value: 0.9922685623168945
224
+ name: Cosine Accuracy Threshold
225
+ - type: cosine_f1
226
+ value: 0.9909909909909909
227
+ name: Cosine F1
228
+ - type: cosine_f1_threshold
229
+ value: 0.9922685623168945
230
+ name: Cosine F1 Threshold
231
+ - type: cosine_precision
232
+ value: 1.0
233
+ name: Cosine Precision
234
+ - type: cosine_recall
235
+ value: 0.9821428571428571
236
+ name: Cosine Recall
237
+ - type: cosine_ap
238
+ value: 1.0
239
+ name: Cosine Ap
240
+ - type: dot_accuracy
241
+ value: 0.9821428571428571
242
+ name: Dot Accuracy
243
+ - type: dot_accuracy_threshold
244
+ value: 0.9922685623168945
245
+ name: Dot Accuracy Threshold
246
+ - type: dot_f1
247
+ value: 0.9909909909909909
248
+ name: Dot F1
249
+ - type: dot_f1_threshold
250
+ value: 0.9922685623168945
251
+ name: Dot F1 Threshold
252
+ - type: dot_precision
253
+ value: 1.0
254
+ name: Dot Precision
255
+ - type: dot_recall
256
+ value: 0.9821428571428571
257
+ name: Dot Recall
258
+ - type: dot_ap
259
+ value: 1.0
260
+ name: Dot Ap
261
+ - type: manhattan_accuracy
262
+ value: 0.9821428571428571
263
+ name: Manhattan Accuracy
264
+ - type: manhattan_accuracy_threshold
265
+ value: 1.8805665969848633
266
+ name: Manhattan Accuracy Threshold
267
+ - type: manhattan_f1
268
+ value: 0.9909909909909909
269
+ name: Manhattan F1
270
+ - type: manhattan_f1_threshold
271
+ value: 1.8805665969848633
272
+ name: Manhattan F1 Threshold
273
+ - type: manhattan_precision
274
+ value: 1.0
275
+ name: Manhattan Precision
276
+ - type: manhattan_recall
277
+ value: 0.9821428571428571
278
+ name: Manhattan Recall
279
+ - type: manhattan_ap
280
+ value: 1.0
281
+ name: Manhattan Ap
282
+ - type: euclidean_accuracy
283
+ value: 0.9821428571428571
284
+ name: Euclidean Accuracy
285
+ - type: euclidean_accuracy_threshold
286
+ value: 0.12164457887411118
287
+ name: Euclidean Accuracy Threshold
288
+ - type: euclidean_f1
289
+ value: 0.9909909909909909
290
+ name: Euclidean F1
291
+ - type: euclidean_f1_threshold
292
+ value: 0.12164457887411118
293
+ name: Euclidean F1 Threshold
294
+ - type: euclidean_precision
295
+ value: 1.0
296
+ name: Euclidean Precision
297
+ - type: euclidean_recall
298
+ value: 0.9821428571428571
299
+ name: Euclidean Recall
300
+ - type: euclidean_ap
301
+ value: 1.0
302
+ name: Euclidean Ap
303
+ - type: max_accuracy
304
+ value: 0.9821428571428571
305
+ name: Max Accuracy
306
+ - type: max_accuracy_threshold
307
+ value: 1.8805665969848633
308
+ name: Max Accuracy Threshold
309
+ - type: max_f1
310
+ value: 0.9909909909909909
311
+ name: Max F1
312
+ - type: max_f1_threshold
313
+ value: 1.8805665969848633
314
+ name: Max F1 Threshold
315
+ - type: max_precision
316
+ value: 1.0
317
+ name: Max Precision
318
+ - type: max_recall
319
+ value: 0.9821428571428571
320
+ name: Max Recall
321
+ - type: max_ap
322
+ value: 1.0
323
+ name: Max Ap
324
+ ---
325
+
326
+ # SentenceTransformer based on srikarvar/fine_tuned_model_5
327
+
328
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
329
+
330
+ ## Model Details
331
+
332
+ ### Model Description
333
+ - **Model Type:** Sentence Transformer
334
+ - **Base model:** [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) <!-- at revision 4e4dc22ad09f760a0a35c55d14d2f89ebe2d2ff2 -->
335
+ - **Maximum Sequence Length:** 512 tokens
336
+ - **Output Dimensionality:** 384 tokens
337
+ - **Similarity Function:** Cosine Similarity
338
+ - **Training Dataset:**
339
+ - json
340
+ <!-- - **Language:** Unknown -->
341
+ <!-- - **License:** Unknown -->
342
+
343
+ ### Model Sources
344
+
345
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
346
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
347
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
348
+
349
+ ### Full Model Architecture
350
+
351
+ ```
352
+ SentenceTransformer(
353
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
354
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
355
+ (2): Normalize()
356
+ )
357
+ ```
358
+
359
+ ## Usage
360
+
361
+ ### Direct Usage (Sentence Transformers)
362
+
363
+ First install the Sentence Transformers library:
364
+
365
+ ```bash
366
+ pip install -U sentence-transformers
367
+ ```
368
+
369
+ Then you can load this model and run inference.
370
+ ```python
371
+ from sentence_transformers import SentenceTransformer
372
+
373
+ # Download from the 🤗 Hub
374
+ model = SentenceTransformer("srikarvar/fine_tuned_model_12")
375
+ # Run inference
376
+ sentences = [
377
+ 'The `num_services` method gives the quantity of services in the garage.',
378
+ 'The `num_services` method returns the number of services in the garage.',
379
+ 'It returns the number of entries in the dataset.',
380
+ ]
381
+ embeddings = model.encode(sentences)
382
+ print(embeddings.shape)
383
+ # [3, 384]
384
+
385
+ # Get the similarity scores for the embeddings
386
+ similarities = model.similarity(embeddings, embeddings)
387
+ print(similarities.shape)
388
+ # [3, 3]
389
+ ```
390
+
391
+ <!--
392
+ ### Direct Usage (Transformers)
393
+
394
+ <details><summary>Click to see the direct usage in Transformers</summary>
395
+
396
+ </details>
397
+ -->
398
+
399
+ <!--
400
+ ### Downstream Usage (Sentence Transformers)
401
+
402
+ You can finetune this model on your own dataset.
403
+
404
+ <details><summary>Click to expand</summary>
405
+
406
+ </details>
407
+ -->
408
+
409
+ <!--
410
+ ### Out-of-Scope Use
411
+
412
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
413
+ -->
414
+
415
+ ## Evaluation
416
+
417
+ ### Metrics
418
+
419
+ #### Binary Classification
420
+ * Dataset: `pair-class-dev`
421
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
422
+
423
+ | Metric | Value |
424
+ |:-----------------------------|:--------|
425
+ | cosine_accuracy | 0.9821 |
426
+ | cosine_accuracy_threshold | 0.9923 |
427
+ | cosine_f1 | 0.991 |
428
+ | cosine_f1_threshold | 0.9923 |
429
+ | cosine_precision | 1.0 |
430
+ | cosine_recall | 0.9821 |
431
+ | cosine_ap | 1.0 |
432
+ | dot_accuracy | 0.9821 |
433
+ | dot_accuracy_threshold | 0.9923 |
434
+ | dot_f1 | 0.991 |
435
+ | dot_f1_threshold | 0.9923 |
436
+ | dot_precision | 1.0 |
437
+ | dot_recall | 0.9821 |
438
+ | dot_ap | 1.0 |
439
+ | manhattan_accuracy | 0.9821 |
440
+ | manhattan_accuracy_threshold | 1.8806 |
441
+ | manhattan_f1 | 0.991 |
442
+ | manhattan_f1_threshold | 1.8806 |
443
+ | manhattan_precision | 1.0 |
444
+ | manhattan_recall | 0.9821 |
445
+ | manhattan_ap | 1.0 |
446
+ | euclidean_accuracy | 0.9821 |
447
+ | euclidean_accuracy_threshold | 0.1216 |
448
+ | euclidean_f1 | 0.991 |
449
+ | euclidean_f1_threshold | 0.1216 |
450
+ | euclidean_precision | 1.0 |
451
+ | euclidean_recall | 0.9821 |
452
+ | euclidean_ap | 1.0 |
453
+ | max_accuracy | 0.9821 |
454
+ | max_accuracy_threshold | 1.8806 |
455
+ | max_f1 | 0.991 |
456
+ | max_f1_threshold | 1.8806 |
457
+ | max_precision | 1.0 |
458
+ | max_recall | 0.9821 |
459
+ | **max_ap** | **1.0** |
460
+
461
+ #### Binary Classification
462
+ * Dataset: `pair-class-test`
463
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
464
+
465
+ | Metric | Value |
466
+ |:-----------------------------|:--------|
467
+ | cosine_accuracy | 0.9821 |
468
+ | cosine_accuracy_threshold | 0.9923 |
469
+ | cosine_f1 | 0.991 |
470
+ | cosine_f1_threshold | 0.9923 |
471
+ | cosine_precision | 1.0 |
472
+ | cosine_recall | 0.9821 |
473
+ | cosine_ap | 1.0 |
474
+ | dot_accuracy | 0.9821 |
475
+ | dot_accuracy_threshold | 0.9923 |
476
+ | dot_f1 | 0.991 |
477
+ | dot_f1_threshold | 0.9923 |
478
+ | dot_precision | 1.0 |
479
+ | dot_recall | 0.9821 |
480
+ | dot_ap | 1.0 |
481
+ | manhattan_accuracy | 0.9821 |
482
+ | manhattan_accuracy_threshold | 1.8806 |
483
+ | manhattan_f1 | 0.991 |
484
+ | manhattan_f1_threshold | 1.8806 |
485
+ | manhattan_precision | 1.0 |
486
+ | manhattan_recall | 0.9821 |
487
+ | manhattan_ap | 1.0 |
488
+ | euclidean_accuracy | 0.9821 |
489
+ | euclidean_accuracy_threshold | 0.1216 |
490
+ | euclidean_f1 | 0.991 |
491
+ | euclidean_f1_threshold | 0.1216 |
492
+ | euclidean_precision | 1.0 |
493
+ | euclidean_recall | 0.9821 |
494
+ | euclidean_ap | 1.0 |
495
+ | max_accuracy | 0.9821 |
496
+ | max_accuracy_threshold | 1.8806 |
497
+ | max_f1 | 0.991 |
498
+ | max_f1_threshold | 1.8806 |
499
+ | max_precision | 1.0 |
500
+ | max_recall | 0.9821 |
501
+ | **max_ap** | **1.0** |
502
+
503
+ <!--
504
+ ## Bias, Risks and Limitations
505
+
506
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
507
+ -->
508
+
509
+ <!--
510
+ ### Recommendations
511
+
512
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
513
+ -->
514
+
515
+ ## Training Details
516
+
517
+ ### Training Dataset
518
+
519
+ #### json
520
+
521
+ * Dataset: json
522
+ * Size: 560 training samples
523
+ * Columns: <code>label</code>, <code>sentence2</code>, and <code>sentence1</code>
524
+ * Approximate statistics based on the first 560 samples:
525
+ | | label | sentence2 | sentence1 |
526
+ |:--------|:-----------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
527
+ | type | int | string | string |
528
+ | details | <ul><li>1: 100.00%</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 30.18 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 30.0 tokens</li><li>max: 98 tokens</li></ul> |
529
+ * Samples:
530
+ | label | sentence2 | sentence1 |
531
+ |:---------------|:---------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
532
+ | <code>1</code> | <code>It is not available in v2.10.0.</code> | <code>No, it doesn't exist in v2.10.0.</code> |
533
+ | <code>1</code> | <code>You can become a member of the research forum and pose questions to the AI community.</code> | <code>You can join and ask questions in the AI research forum.</code> |
534
+ | <code>1</code> | <code>No information regarding initializing a project for PyTorch is included in the guide.</code> | <code>The guide does not provide information on how to initialize a project for PyTorch.</code> |
535
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
536
+
537
+ ### Evaluation Dataset
538
+
539
+ #### json
540
+
541
+ * Dataset: json
542
+ * Size: 560 evaluation samples
543
+ * Columns: <code>label</code>, <code>sentence2</code>, and <code>sentence1</code>
544
+ * Approximate statistics based on the first 560 samples:
545
+ | | label | sentence2 | sentence1 |
546
+ |:--------|:-----------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
547
+ | type | int | string | string |
548
+ | details | <ul><li>1: 100.00%</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 32.29 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 31.96 tokens</li><li>max: 82 tokens</li></ul> |
549
+ * Samples:
550
+ | label | sentence2 | sentence1 |
551
+ |:---------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
552
+ | <code>1</code> | <code>The how-to guides for the platform include instructions for Setup, Processing, Streaming, TensorFlow integration, PyTorch integration, Caching, Cloud storage, Indexing, Analytics, and Data Pipelines.</code> | <code>The how-to guides for the platform include Setup, Processing, Streaming, TensorFlow integration, PyTorch integration, Cache management, Cloud storage, Search index, Analytics, and Data Pipelines.</code> |
553
+ | <code>1</code> | <code>In the absence of a model script, all files in the supported formats will be loaded. However, if a model script is present, it will be downloaded and executed in order to download and prepare the model.</code> | <code>If there’s no model script, all the files in the supported formats are loaded. If there’s a model script, it is downloaded and executed to download and prepare the model.</code> |
554
+ | <code>1</code> | <code>React, Angular, and Vue are compatible with the Plugin library.</code> | <code>The Plugin library can be used with React, Angular, and Vue.</code> |
555
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
556
+
557
+ ### Training Hyperparameters
558
+ #### Non-Default Hyperparameters
559
+
560
+ - `eval_strategy`: epoch
561
+ - `per_device_train_batch_size`: 32
562
+ - `per_device_eval_batch_size`: 32
563
+ - `gradient_accumulation_steps`: 2
564
+ - `num_train_epochs`: 4
565
+ - `warmup_ratio`: 0.1
566
+ - `load_best_model_at_end`: True
567
+ - `optim`: adamw_torch_fused
568
+ - `batch_sampler`: no_duplicates
569
+
570
+ #### All Hyperparameters
571
+ <details><summary>Click to expand</summary>
572
+
573
+ - `overwrite_output_dir`: False
574
+ - `do_predict`: False
575
+ - `eval_strategy`: epoch
576
+ - `prediction_loss_only`: True
577
+ - `per_device_train_batch_size`: 32
578
+ - `per_device_eval_batch_size`: 32
579
+ - `per_gpu_train_batch_size`: None
580
+ - `per_gpu_eval_batch_size`: None
581
+ - `gradient_accumulation_steps`: 2
582
+ - `eval_accumulation_steps`: None
583
+ - `learning_rate`: 5e-05
584
+ - `weight_decay`: 0.0
585
+ - `adam_beta1`: 0.9
586
+ - `adam_beta2`: 0.999
587
+ - `adam_epsilon`: 1e-08
588
+ - `max_grad_norm`: 1.0
589
+ - `num_train_epochs`: 4
590
+ - `max_steps`: -1
591
+ - `lr_scheduler_type`: linear
592
+ - `lr_scheduler_kwargs`: {}
593
+ - `warmup_ratio`: 0.1
594
+ - `warmup_steps`: 0
595
+ - `log_level`: passive
596
+ - `log_level_replica`: warning
597
+ - `log_on_each_node`: True
598
+ - `logging_nan_inf_filter`: True
599
+ - `save_safetensors`: True
600
+ - `save_on_each_node`: False
601
+ - `save_only_model`: False
602
+ - `restore_callback_states_from_checkpoint`: False
603
+ - `no_cuda`: False
604
+ - `use_cpu`: False
605
+ - `use_mps_device`: False
606
+ - `seed`: 42
607
+ - `data_seed`: None
608
+ - `jit_mode_eval`: False
609
+ - `use_ipex`: False
610
+ - `bf16`: False
611
+ - `fp16`: False
612
+ - `fp16_opt_level`: O1
613
+ - `half_precision_backend`: auto
614
+ - `bf16_full_eval`: False
615
+ - `fp16_full_eval`: False
616
+ - `tf32`: None
617
+ - `local_rank`: 0
618
+ - `ddp_backend`: None
619
+ - `tpu_num_cores`: None
620
+ - `tpu_metrics_debug`: False
621
+ - `debug`: []
622
+ - `dataloader_drop_last`: False
623
+ - `dataloader_num_workers`: 0
624
+ - `dataloader_prefetch_factor`: None
625
+ - `past_index`: -1
626
+ - `disable_tqdm`: False
627
+ - `remove_unused_columns`: True
628
+ - `label_names`: None
629
+ - `load_best_model_at_end`: True
630
+ - `ignore_data_skip`: False
631
+ - `fsdp`: []
632
+ - `fsdp_min_num_params`: 0
633
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
634
+ - `fsdp_transformer_layer_cls_to_wrap`: None
635
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
636
+ - `deepspeed`: None
637
+ - `label_smoothing_factor`: 0.0
638
+ - `optim`: adamw_torch_fused
639
+ - `optim_args`: None
640
+ - `adafactor`: False
641
+ - `group_by_length`: False
642
+ - `length_column_name`: length
643
+ - `ddp_find_unused_parameters`: None
644
+ - `ddp_bucket_cap_mb`: None
645
+ - `ddp_broadcast_buffers`: False
646
+ - `dataloader_pin_memory`: True
647
+ - `dataloader_persistent_workers`: False
648
+ - `skip_memory_metrics`: True
649
+ - `use_legacy_prediction_loop`: False
650
+ - `push_to_hub`: False
651
+ - `resume_from_checkpoint`: None
652
+ - `hub_model_id`: None
653
+ - `hub_strategy`: every_save
654
+ - `hub_private_repo`: False
655
+ - `hub_always_push`: False
656
+ - `gradient_checkpointing`: False
657
+ - `gradient_checkpointing_kwargs`: None
658
+ - `include_inputs_for_metrics`: False
659
+ - `eval_do_concat_batches`: True
660
+ - `fp16_backend`: auto
661
+ - `push_to_hub_model_id`: None
662
+ - `push_to_hub_organization`: None
663
+ - `mp_parameters`:
664
+ - `auto_find_batch_size`: False
665
+ - `full_determinism`: False
666
+ - `torchdynamo`: None
667
+ - `ray_scope`: last
668
+ - `ddp_timeout`: 1800
669
+ - `torch_compile`: False
670
+ - `torch_compile_backend`: None
671
+ - `torch_compile_mode`: None
672
+ - `dispatch_batches`: None
673
+ - `split_batches`: None
674
+ - `include_tokens_per_second`: False
675
+ - `include_num_input_tokens_seen`: False
676
+ - `neftune_noise_alpha`: None
677
+ - `optim_target_modules`: None
678
+ - `batch_eval_metrics`: False
679
+ - `batch_sampler`: no_duplicates
680
+ - `multi_dataset_batch_sampler`: proportional
681
+
682
+ </details>
683
+
684
+ ### Training Logs
685
+ | Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
686
+ |:-------:|:------:|:-------------:|:----------:|:---------------------:|:----------------------:|
687
+ | 0 | 0 | - | - | 1.0 | - |
688
+ | 1.0 | 8 | - | 0.0028 | 1.0 | - |
689
+ | 1.25 | 10 | 0.1425 | - | - | - |
690
+ | 2.0 | 16 | - | 0.0003 | 1.0 | - |
691
+ | 2.5 | 20 | 0.002 | - | - | - |
692
+ | 3.0 | 24 | - | 0.0001 | 1.0 | - |
693
+ | 3.75 | 30 | 0.0008 | - | - | - |
694
+ | **4.0** | **32** | **-** | **0.0001** | **1.0** | **1.0** |
695
+
696
+ * The bold row denotes the saved checkpoint.
697
+
698
+ ### Framework Versions
699
+ - Python: 3.10.12
700
+ - Sentence Transformers: 3.1.0
701
+ - Transformers: 4.41.2
702
+ - PyTorch: 2.1.2+cu121
703
+ - Accelerate: 0.34.2
704
+ - Datasets: 2.19.1
705
+ - Tokenizers: 0.19.1
706
+
707
+ ## Citation
708
+
709
+ ### BibTeX
710
+
711
+ #### Sentence Transformers
712
+ ```bibtex
713
+ @inproceedings{reimers-2019-sentence-bert,
714
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
715
+ author = "Reimers, Nils and Gurevych, Iryna",
716
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
717
+ month = "11",
718
+ year = "2019",
719
+ publisher = "Association for Computational Linguistics",
720
+ url = "https://arxiv.org/abs/1908.10084",
721
+ }
722
+ ```
723
+
724
+ <!--
725
+ ## Glossary
726
+
727
+ *Clearly define terms in order to be accessible across audiences.*
728
+ -->
729
+
730
+ <!--
731
+ ## Model Card Authors
732
+
733
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
734
+ -->
735
+
736
+ <!--
737
+ ## Model Card Contact
738
+
739
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
740
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "srikarvar/fine_tuned_model_5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:405680f3fc6f90eac9125d1ea1cc1a925d176022bd270672217b31184022919d
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }