--- license: other base_model: sayeed99/segformer-b3-fashion tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b3-fashion-finetuned-polo-segments-aug-07-v1.2 results: [] --- # segformer-b3-fashion-finetuned-polo-segments-aug-07-v1.2 This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset. It achieves the following results on the evaluation set: - Loss: 0.0582 - Mean Iou: 0.8583 - Mean Accuracy: 0.9104 - Overall Accuracy: 0.9803 - Accuracy Unlabeled: nan - Accuracy Collar: 0.8741 - Accuracy Polo: 0.9786 - Accuracy Lines-cuff: 0.7185 - Accuracy Lines-chest: 0.9188 - Accuracy Human: 0.9805 - Accuracy Background: 0.9920 - Iou Unlabeled: nan - Iou Collar: 0.8111 - Iou Polo: 0.9580 - Iou Lines-cuff: 0.6290 - Iou Lines-chest: 0.8101 - Iou Human: 0.9553 - Iou Background: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:| | 0.1564 | 4.0 | 20 | 0.1474 | 0.5073 | 0.6210 | 0.9633 | nan | 0.7561 | 0.9797 | 0.0183 | 0.0138 | 0.9829 | 0.9750 | 0.0 | 0.6873 | 0.9282 | 0.0182 | 0.0131 | 0.9332 | 0.9714 | | 0.0912 | 8.0 | 40 | 0.0812 | 0.7332 | 0.7637 | 0.9751 | nan | 0.8012 | 0.9798 | 0.1221 | 0.7058 | 0.9886 | 0.9847 | nan | 0.7652 | 0.9512 | 0.1220 | 0.6314 | 0.9483 | 0.9811 | | 0.0724 | 12.0 | 60 | 0.0693 | 0.8345 | 0.8765 | 0.9791 | nan | 0.8651 | 0.9817 | 0.5794 | 0.8633 | 0.9810 | 0.9888 | nan | 0.8025 | 0.9570 | 0.5407 | 0.7688 | 0.9537 | 0.9844 | | 0.0609 | 16.0 | 80 | 0.0633 | 0.8506 | 0.9022 | 0.9796 | nan | 0.8697 | 0.9771 | 0.6806 | 0.9123 | 0.9826 | 0.9907 | nan | 0.8093 | 0.9573 | 0.6053 | 0.7921 | 0.9541 | 0.9853 | | 0.0602 | 20.0 | 100 | 0.0629 | 0.8493 | 0.8960 | 0.9794 | nan | 0.8576 | 0.9789 | 0.6686 | 0.8987 | 0.9818 | 0.9904 | nan | 0.8024 | 0.9569 | 0.6004 | 0.7974 | 0.9532 | 0.9855 | | 0.0536 | 24.0 | 120 | 0.0588 | 0.8556 | 0.9083 | 0.9801 | nan | 0.8709 | 0.9788 | 0.7104 | 0.9172 | 0.9823 | 0.9902 | nan | 0.8090 | 0.9581 | 0.6244 | 0.8011 | 0.9552 | 0.9856 | | 0.0459 | 28.0 | 140 | 0.0582 | 0.8583 | 0.9104 | 0.9803 | nan | 0.8741 | 0.9786 | 0.7185 | 0.9188 | 0.9805 | 0.9920 | nan | 0.8111 | 0.9580 | 0.6290 | 0.8101 | 0.9553 | 0.9863 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1