File size: 2,455 Bytes
081e96d 938a266 081e96d 938a266 081e96d 938a266 081e96d 938a266 081e96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.0524
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 8.0085
- Rouge1: 0.0524
- Rouge2: 0.0083
- Rougel: 0.0416
- Rougelsum: 0.0416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log | 1.0 | 4 | 12.7017 | 0.0208 | 0.0 | 0.0148 | 0.0148 |
| No log | 2.0 | 8 | 10.3879 | 0.0208 | 0.0 | 0.0148 | 0.0148 |
| 18.6837 | 3.0 | 12 | 9.1367 | 0.0208 | 0.0 | 0.0148 | 0.0148 |
| 18.6837 | 4.0 | 16 | 8.6067 | 0.0269 | 0.0 | 0.0209 | 0.0209 |
| 18.6837 | 5.0 | 20 | 8.2033 | 0.0377 | 0.0 | 0.026 | 0.0256 |
| 15.292 | 6.0 | 24 | 8.1000 | 0.0524 | 0.0083 | 0.0416 | 0.0416 |
| 15.292 | 7.0 | 28 | 8.0750 | 0.0524 | 0.0083 | 0.0416 | 0.0416 |
| 15.292 | 8.0 | 32 | 8.0085 | 0.0524 | 0.0083 | 0.0416 | 0.0416 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2
|