--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 0.0899 --- # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 3.6525 - Rouge1: 0.0899 - Rouge2: 0.0226 - Rougel: 0.0821 - Rougelsum: 0.0807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 18.5949 | 1.0 | 50 | 8.8110 | 0.0298 | 0.0 | 0.0298 | 0.0298 | | 10.7742 | 2.0 | 100 | 5.1285 | 0.087 | 0.0087 | 0.0805 | 0.0796 | | 7.6938 | 3.0 | 150 | 4.3645 | 0.0684 | 0.0 | 0.0579 | 0.0615 | | 6.3393 | 4.0 | 200 | 4.0164 | 0.035 | 0.0 | 0.0355 | 0.035 | | 5.9075 | 5.0 | 250 | 3.7881 | 0.0579 | 0.0065 | 0.051 | 0.0528 | | 5.7394 | 6.0 | 300 | 3.6971 | 0.0749 | 0.0226 | 0.0733 | 0.0733 | | 5.4246 | 7.0 | 350 | 3.6652 | 0.0749 | 0.0226 | 0.0733 | 0.0733 | | 5.2963 | 8.0 | 400 | 3.6525 | 0.0899 | 0.0226 | 0.0821 | 0.0807 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2