merge main in branch
Browse files- README.md +98 -3
- text_encoder/model.onnx +3 -0
- text_encoder_2/model.onnx +3 -0
- text_encoder_2/model.onnx_data +3 -0
- unet/model.onnx +3 -0
- unet/model.onnx_data +3 -0
- vae_decoder/model.onnx +3 -0
- vae_encoder/model.onnx +3 -0
README.md
CHANGED
@@ -48,7 +48,7 @@ The SDXL base model performs significantly better than the previous variants, an
|
|
48 |
|
49 |
### 🧨 Diffusers
|
50 |
|
51 |
-
Make sure to upgrade diffusers to >= 0.
|
52 |
```
|
53 |
pip install diffusers --upgrade
|
54 |
```
|
@@ -58,7 +58,8 @@ In addition make sure to install `transformers`, `safetensors`, `accelerate` as
|
|
58 |
pip install invisible_watermark transformers accelerate safetensors
|
59 |
```
|
60 |
|
61 |
-
|
|
|
62 |
```py
|
63 |
from diffusers import DiffusionPipeline
|
64 |
import torch
|
@@ -74,6 +75,48 @@ prompt = "An astronaut riding a green horse"
|
|
74 |
images = pipe(prompt=prompt).images[0]
|
75 |
```
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
|
78 |
```py
|
79 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
@@ -87,6 +130,58 @@ instead of `.to("cuda")`:
|
|
87 |
+ pipe.enable_model_cpu_offload()
|
88 |
```
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
## Uses
|
92 |
|
@@ -117,4 +212,4 @@ The model was not trained to be factual or true representations of people or eve
|
|
117 |
- The autoencoding part of the model is lossy.
|
118 |
|
119 |
### Bias
|
120 |
-
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
|
|
|
48 |
|
49 |
### 🧨 Diffusers
|
50 |
|
51 |
+
Make sure to upgrade diffusers to >= 0.19.0:
|
52 |
```
|
53 |
pip install diffusers --upgrade
|
54 |
```
|
|
|
58 |
pip install invisible_watermark transformers accelerate safetensors
|
59 |
```
|
60 |
|
61 |
+
To just use the base model, you can run:
|
62 |
+
|
63 |
```py
|
64 |
from diffusers import DiffusionPipeline
|
65 |
import torch
|
|
|
75 |
images = pipe(prompt=prompt).images[0]
|
76 |
```
|
77 |
|
78 |
+
To use the whole base + refiner pipeline as an ensemble of experts you can run:
|
79 |
+
|
80 |
+
```py
|
81 |
+
from diffusers import DiffusionPipeline
|
82 |
+
import torch
|
83 |
+
|
84 |
+
# load both base & refiner
|
85 |
+
base = DiffusionPipeline.from_pretrained(
|
86 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
87 |
+
)
|
88 |
+
base.to("cuda")
|
89 |
+
refiner = DiffusionPipeline.from_pretrained(
|
90 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
91 |
+
text_encoder_2=base.text_encoder_2,
|
92 |
+
vae=base.vae,
|
93 |
+
torch_dtype=torch.float16,
|
94 |
+
use_safetensors=True,
|
95 |
+
variant="fp16",
|
96 |
+
)
|
97 |
+
refiner.to("cuda")
|
98 |
+
|
99 |
+
# Define how many steps and what % of steps to be run on each experts (80/20) here
|
100 |
+
n_steps = 40
|
101 |
+
high_noise_frac = 0.8
|
102 |
+
|
103 |
+
prompt = "A majestic lion jumping from a big stone at night"
|
104 |
+
|
105 |
+
# run both experts
|
106 |
+
image = base(
|
107 |
+
prompt=prompt,
|
108 |
+
num_inference_steps=n_steps,
|
109 |
+
denoising_end=high_noise_frac,
|
110 |
+
output_type="latent",
|
111 |
+
).images
|
112 |
+
image = refiner(
|
113 |
+
prompt=prompt,
|
114 |
+
num_inference_steps=n_steps,
|
115 |
+
denoising_start=high_noise_frac,
|
116 |
+
image=image,
|
117 |
+
).images[0]
|
118 |
+
```
|
119 |
+
|
120 |
When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
|
121 |
```py
|
122 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
130 |
+ pipe.enable_model_cpu_offload()
|
131 |
```
|
132 |
|
133 |
+
For more information on how to use Stable Diffusion XL with `diffusers`, please have a look at [the Stable Diffusion XL Docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl).
|
134 |
+
|
135 |
+
### Optimum
|
136 |
+
[Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/).
|
137 |
+
|
138 |
+
#### OpenVINO
|
139 |
+
|
140 |
+
To install Optimum with the dependencies required for OpenVINO :
|
141 |
+
|
142 |
+
```bash
|
143 |
+
pip install optimum[openvino]
|
144 |
+
```
|
145 |
+
|
146 |
+
To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `OVStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`.
|
147 |
+
|
148 |
+
```diff
|
149 |
+
- from diffusers import StableDiffusionPipeline
|
150 |
+
+ from optimum.intel import OVStableDiffusionPipeline
|
151 |
+
|
152 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
153 |
+
- pipeline = StableDiffusionPipeline.from_pretrained(model_id)
|
154 |
+
+ pipeline = OVStableDiffusionPipeline.from_pretrained(model_id)
|
155 |
+
prompt = "A majestic lion jumping from a big stone at night"
|
156 |
+
image = pipeline(prompt).images[0]
|
157 |
+
```
|
158 |
+
|
159 |
+
You can find more examples (such as static reshaping and model compilation) in optimum [documentation](https://huggingface.co/docs/optimum/main/en/intel/inference#stable-diffusion-xl).
|
160 |
+
|
161 |
+
|
162 |
+
#### ONNX
|
163 |
+
|
164 |
+
To install Optimum with the dependencies required for ONNX Runtime inference :
|
165 |
+
|
166 |
+
```bash
|
167 |
+
pip install optimum[onnxruntime]
|
168 |
+
```
|
169 |
+
|
170 |
+
To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `ORTStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
|
171 |
+
|
172 |
+
```diff
|
173 |
+
- from diffusers import StableDiffusionPipeline
|
174 |
+
+ from optimum.onnxruntime import ORTStableDiffusionPipeline
|
175 |
+
|
176 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
177 |
+
- pipeline = StableDiffusionPipeline.from_pretrained(model_id)
|
178 |
+
+ pipeline = ORTStableDiffusionPipeline.from_pretrained(model_id)
|
179 |
+
prompt = "A majestic lion jumping from a big stone at night"
|
180 |
+
image = pipeline(prompt).images[0]
|
181 |
+
```
|
182 |
+
|
183 |
+
You can find more examples in optimum [documentation](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models#stable-diffusion-xl).
|
184 |
+
|
185 |
|
186 |
## Uses
|
187 |
|
|
|
212 |
- The autoencoding part of the model is lossy.
|
213 |
|
214 |
### Bias
|
215 |
+
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
|
text_encoder/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e27bafa0b3029ad637ef3ace24ce1efe85b8d0dbd22e03a2e70bda6fc88963a1
|
3 |
+
size 492587457
|
text_encoder_2/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:162042ac6556e73f93d4172d4c67532c1cbe4dc7a6a8fa7e44dd2e3d7cbb772b
|
3 |
+
size 1041992
|
text_encoder_2/model.onnx_data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3da7ac65349fbd092e836e3eeca2c22811317bc804fd70af157b4550f2d4bcb5
|
3 |
+
size 2778639360
|
unet/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f001c090fb13c0d0f8b0a5916da814712a94400b99471fabe77c1c4a51ecaaf
|
3 |
+
size 7293842
|
unet/model.onnx_data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7905b71f0044c5ea8fea8ca0451bd73cad53492ad50f964c49c3ff9250afa350
|
3 |
+
size 10269854720
|
vae_decoder/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0892c5e28b35791140467f7b9c9fa148c24238a5f0c381b1d4c22dcd2ed365cb
|
3 |
+
size 198093688
|
vae_encoder/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b117fbb21531efd59d68c95682392785999bf3e0c2ce95647c6e0de9af36e74
|
3 |
+
size 136775724
|