jon-tow commited on
Commit
780d6d4
·
1 Parent(s): 007331f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -21,9 +21,9 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
21
 
22
  tokenizer = AutoTokenizer.from_pretrained("StabilityAI/stablelm-base-alpha-7b")
23
  model = AutoModelForCausalLM.from_pretrained("StabilityAI/stablelm-base-alpha-7b")
24
- model.half().cuda()
25
 
26
- inputs = tokenizer("What's your mood today?", return_tensors="pt").to('cuda')
27
  tokens = model.generate(
28
  **inputs,
29
  max_new_tokens=64,
@@ -55,7 +55,7 @@ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
55
 
56
  ### Training Procedure
57
 
58
- Models are pre-trained on the aforementioned dataset in mixed-precision (FP16) and optimized with Adam. We outline the complete hyperparameters choices in the project's GitHub repository **{TODO: FILL IN LINK}**.
59
 
60
  ## Use and Limitations
61
 
 
21
 
22
  tokenizer = AutoTokenizer.from_pretrained("StabilityAI/stablelm-base-alpha-7b")
23
  model = AutoModelForCausalLM.from_pretrained("StabilityAI/stablelm-base-alpha-7b")
24
+ model.half()
25
 
26
+ inputs = tokenizer("What's your mood today?", return_tensors="pt")
27
  tokens = model.generate(
28
  **inputs,
29
  max_new_tokens=64,
 
55
 
56
  ### Training Procedure
57
 
58
+ Models are pre-trained on the aforementioned dataset in mixed-precision (FP16), optimized with Adam, and trained using the NeoX tokenizer with a vocabulary size of 50,257. We outline the complete hyperparameters choices in the project's GitHub repository **{TODO: FILL IN LINK}**.
59
 
60
  ## Use and Limitations
61