File size: 3,835 Bytes
2d1d254 310ad6b 2d1d254 310ad6b 2d1d254 4a8bb46 4bdd8d0 4a8bb46 310ad6b 2d1d254 b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 310ad6b b02d4c7 2d1d254 c4dd631 2d1d254 672f460 209dd79 2d1d254 672f460 2d1d254 c460aaa 2d1d254 c460aaa 2d1d254 209dd79 672f460 2d1d254 672f460 2d1d254 672f460 2d1d254 672f460 2d1d254 672f460 2d1d254 672f460 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- generated_from_trainer
- summarization
- stacked summaries
- prompt engineering
datasets:
- stacked-summaries/stacked-samsum-1024
metrics:
- rouge
pipeline_tag: summarization
base_model: google/flan-t5-large
model-index:
- name: flan-t5-large-stacked-samsum1024-WIP3
results:
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: test
metrics:
- type: rouge
value: 47.6682
name: ROUGE-1
verified: true
- type: rouge
value: 23.3053
name: ROUGE-2
verified: true
- type: rouge
value: 39.7678
name: ROUGE-L
verified: true
- type: rouge
value: 43.259
name: ROUGE-LSUM
verified: true
- type: loss
value: 2.372586965560913
name: loss
verified: true
- type: gen_len
value: 17.4237
name: gen_len
verified: true
---
# flan-t5-large-stacked-samsum-1024
<a href="https://colab.research.google.com/gist/pszemraj/a4bf61f593ebda9a8db6dc58839d9de4/brief-demo-flan-t5-stacked-samsum.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the `stacked-summaries/stacked-samsum-1024` dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1846
- Rouge1: 57.9637
- Rouge2: 28.7446
- Rougel: 44.3826
- Rougelsum: 54.0399
- Gen Len: 122.77
## Model description
This model card presents a model trained on a stacked dataset that aims to improve summarization by testing the benefits of "task-oriented pretraining". The model is designed to learn how to effectively condense and distill information from text by stacking summaries and separating them into independent concepts. In this way, the model can learn to identify essential information without simply mimicking the style of the dataset summaries.
The token used to identify a new concept in the summary is `[NEXT_CONCEPT]`. You can split an output summary based on this token to see how it split the input text information: `summary_text.split("[NEXT_CONCEPT]")` etc.
## Intended uses & limitations
- max input/output is 1024 tokens
- this is mostly a test because `samsum` is not exactly the best dataset for general-purpose summarization
## Training and evaluation data
See the dataset card linked on this page for info
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 24915
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.1195 | 0.17 | 20 | 2.0635 | 57.8829 | 28.7887 | 44.4256 | 54.1299 | 121.8 |
| 0.1084 | 0.35 | 40 | 2.1178 | 58.0416 | 28.6487 | 44.3905 | 54.1557 | 122.893 |
| 0.1019 | 0.52 | 60 | 2.1576 | 57.816 | 28.7069 | 44.4242 | 53.9598 | 120.524 |
| 0.0975 | 0.7 | 80 | 2.1821 | 57.9597 | 28.8178 | 44.4854 | 54.068 | 121.793 |
| 0.0947 | 0.87 | 100 | 2.1846 | 57.9637 | 28.7446 | 44.3826 | 54.0399 | 122.77 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1 |