File size: 26,574 Bytes
bf767d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
2024-03-26 11:12:07,458 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(30001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Train:  758 sentences
2024-03-26 11:12:07,459         (train_with_dev=False, train_with_test=False)
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Training Params:
2024-03-26 11:12:07,459  - learning_rate: "3e-05" 
2024-03-26 11:12:07,459  - mini_batch_size: "16"
2024-03-26 11:12:07,459  - max_epochs: "10"
2024-03-26 11:12:07,459  - shuffle: "True"
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Plugins:
2024-03-26 11:12:07,459  - TensorboardLogger
2024-03-26 11:12:07,459  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 11:12:07,459  - metric: "('micro avg', 'f1-score')"
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Computation:
2024-03-26 11:12:07,459  - compute on device: cuda:0
2024-03-26 11:12:07,459  - embedding storage: none
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr3e-05-2"
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:07,459 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 11:12:09,254 epoch 1 - iter 4/48 - loss 3.16306784 - time (sec): 1.79 - samples/sec: 1683.21 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:12:11,484 epoch 1 - iter 8/48 - loss 3.08728552 - time (sec): 4.02 - samples/sec: 1542.55 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:12:13,424 epoch 1 - iter 12/48 - loss 3.02503918 - time (sec): 5.96 - samples/sec: 1494.59 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:12:15,448 epoch 1 - iter 16/48 - loss 2.90887267 - time (sec): 7.99 - samples/sec: 1518.99 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:12:17,757 epoch 1 - iter 20/48 - loss 2.78404911 - time (sec): 10.30 - samples/sec: 1483.97 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:12:20,883 epoch 1 - iter 24/48 - loss 2.66287611 - time (sec): 13.42 - samples/sec: 1354.23 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:12:23,406 epoch 1 - iter 28/48 - loss 2.53932089 - time (sec): 15.95 - samples/sec: 1336.49 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:12:24,241 epoch 1 - iter 32/48 - loss 2.45998768 - time (sec): 16.78 - samples/sec: 1391.37 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:12:25,574 epoch 1 - iter 36/48 - loss 2.36289832 - time (sec): 18.11 - samples/sec: 1443.65 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:12:27,525 epoch 1 - iter 40/48 - loss 2.28678685 - time (sec): 20.07 - samples/sec: 1449.80 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:12:29,505 epoch 1 - iter 44/48 - loss 2.18927422 - time (sec): 22.05 - samples/sec: 1449.30 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:12:30,921 epoch 1 - iter 48/48 - loss 2.11069614 - time (sec): 23.46 - samples/sec: 1469.26 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:12:30,922 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:30,922 EPOCH 1 done: loss 2.1107 - lr: 0.000029
2024-03-26 11:12:31,865 DEV : loss 0.7406538128852844 - f1-score (micro avg)  0.4904
2024-03-26 11:12:31,866 saving best model
2024-03-26 11:12:32,158 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:33,483 epoch 2 - iter 4/48 - loss 1.05138817 - time (sec): 1.32 - samples/sec: 2191.17 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:12:35,353 epoch 2 - iter 8/48 - loss 0.87906687 - time (sec): 3.19 - samples/sec: 1909.15 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:12:38,859 epoch 2 - iter 12/48 - loss 0.75980156 - time (sec): 6.70 - samples/sec: 1519.05 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:12:41,406 epoch 2 - iter 16/48 - loss 0.70656249 - time (sec): 9.25 - samples/sec: 1440.33 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:12:44,203 epoch 2 - iter 20/48 - loss 0.65983774 - time (sec): 12.04 - samples/sec: 1379.31 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:12:46,198 epoch 2 - iter 24/48 - loss 0.62246019 - time (sec): 14.04 - samples/sec: 1373.20 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:12:48,002 epoch 2 - iter 28/48 - loss 0.61743183 - time (sec): 15.84 - samples/sec: 1384.37 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:12:49,808 epoch 2 - iter 32/48 - loss 0.60027304 - time (sec): 17.65 - samples/sec: 1394.07 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:12:51,737 epoch 2 - iter 36/48 - loss 0.58144132 - time (sec): 19.58 - samples/sec: 1401.19 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:12:52,763 epoch 2 - iter 40/48 - loss 0.56884272 - time (sec): 20.60 - samples/sec: 1448.84 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:12:54,236 epoch 2 - iter 44/48 - loss 0.56205915 - time (sec): 22.08 - samples/sec: 1468.31 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:12:55,816 epoch 2 - iter 48/48 - loss 0.54402847 - time (sec): 23.66 - samples/sec: 1457.17 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:12:55,816 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:55,816 EPOCH 2 done: loss 0.5440 - lr: 0.000027
2024-03-26 11:12:56,749 DEV : loss 0.3272944986820221 - f1-score (micro avg)  0.7565
2024-03-26 11:12:56,750 saving best model
2024-03-26 11:12:57,213 ----------------------------------------------------------------------------------------------------
2024-03-26 11:12:59,771 epoch 3 - iter 4/48 - loss 0.30544675 - time (sec): 2.56 - samples/sec: 1176.92 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:13:01,960 epoch 3 - iter 8/48 - loss 0.30379025 - time (sec): 4.75 - samples/sec: 1338.00 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:13:03,549 epoch 3 - iter 12/48 - loss 0.31891615 - time (sec): 6.33 - samples/sec: 1400.54 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:13:05,320 epoch 3 - iter 16/48 - loss 0.29901581 - time (sec): 8.11 - samples/sec: 1402.16 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:13:06,511 epoch 3 - iter 20/48 - loss 0.30884041 - time (sec): 9.30 - samples/sec: 1471.74 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:13:08,379 epoch 3 - iter 24/48 - loss 0.31810372 - time (sec): 11.16 - samples/sec: 1473.90 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:13:10,884 epoch 3 - iter 28/48 - loss 0.31428333 - time (sec): 13.67 - samples/sec: 1415.34 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:13:12,794 epoch 3 - iter 32/48 - loss 0.31267095 - time (sec): 15.58 - samples/sec: 1420.98 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:13:14,278 epoch 3 - iter 36/48 - loss 0.30305540 - time (sec): 17.06 - samples/sec: 1452.18 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:13:16,599 epoch 3 - iter 40/48 - loss 0.29326992 - time (sec): 19.38 - samples/sec: 1424.28 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:13:19,982 epoch 3 - iter 44/48 - loss 0.27254472 - time (sec): 22.77 - samples/sec: 1415.27 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:13:21,332 epoch 3 - iter 48/48 - loss 0.26917818 - time (sec): 24.12 - samples/sec: 1429.30 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:13:21,333 ----------------------------------------------------------------------------------------------------
2024-03-26 11:13:21,333 EPOCH 3 done: loss 0.2692 - lr: 0.000023
2024-03-26 11:13:22,276 DEV : loss 0.2584502100944519 - f1-score (micro avg)  0.8292
2024-03-26 11:13:22,279 saving best model
2024-03-26 11:13:22,739 ----------------------------------------------------------------------------------------------------
2024-03-26 11:13:24,351 epoch 4 - iter 4/48 - loss 0.29781570 - time (sec): 1.61 - samples/sec: 1582.51 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:13:26,710 epoch 4 - iter 8/48 - loss 0.22897059 - time (sec): 3.97 - samples/sec: 1509.70 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:13:27,969 epoch 4 - iter 12/48 - loss 0.21408042 - time (sec): 5.23 - samples/sec: 1598.39 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:13:30,257 epoch 4 - iter 16/48 - loss 0.20453825 - time (sec): 7.52 - samples/sec: 1499.82 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:13:32,884 epoch 4 - iter 20/48 - loss 0.19298299 - time (sec): 10.14 - samples/sec: 1378.36 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:13:35,007 epoch 4 - iter 24/48 - loss 0.20089208 - time (sec): 12.27 - samples/sec: 1372.28 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:13:37,157 epoch 4 - iter 28/48 - loss 0.19731722 - time (sec): 14.42 - samples/sec: 1379.88 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:13:39,826 epoch 4 - iter 32/48 - loss 0.19273634 - time (sec): 17.09 - samples/sec: 1349.67 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:13:42,677 epoch 4 - iter 36/48 - loss 0.18444787 - time (sec): 19.94 - samples/sec: 1341.70 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:13:44,459 epoch 4 - iter 40/48 - loss 0.17908396 - time (sec): 21.72 - samples/sec: 1339.53 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:13:46,546 epoch 4 - iter 44/48 - loss 0.17774704 - time (sec): 23.81 - samples/sec: 1340.95 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:13:48,279 epoch 4 - iter 48/48 - loss 0.17546508 - time (sec): 25.54 - samples/sec: 1349.77 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:13:48,279 ----------------------------------------------------------------------------------------------------
2024-03-26 11:13:48,279 EPOCH 4 done: loss 0.1755 - lr: 0.000020
2024-03-26 11:13:49,244 DEV : loss 0.2244909107685089 - f1-score (micro avg)  0.8723
2024-03-26 11:13:49,246 saving best model
2024-03-26 11:13:49,699 ----------------------------------------------------------------------------------------------------
2024-03-26 11:13:50,536 epoch 5 - iter 4/48 - loss 0.09331887 - time (sec): 0.84 - samples/sec: 2191.66 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:13:51,957 epoch 5 - iter 8/48 - loss 0.11095802 - time (sec): 2.26 - samples/sec: 1970.19 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:13:54,821 epoch 5 - iter 12/48 - loss 0.10642550 - time (sec): 5.12 - samples/sec: 1558.10 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:13:57,934 epoch 5 - iter 16/48 - loss 0.10476513 - time (sec): 8.23 - samples/sec: 1370.39 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:13:59,365 epoch 5 - iter 20/48 - loss 0.11438732 - time (sec): 9.67 - samples/sec: 1420.32 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:14:02,022 epoch 5 - iter 24/48 - loss 0.11257857 - time (sec): 12.32 - samples/sec: 1359.65 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:14:04,162 epoch 5 - iter 28/48 - loss 0.11104460 - time (sec): 14.46 - samples/sec: 1351.01 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:14:06,530 epoch 5 - iter 32/48 - loss 0.11618625 - time (sec): 16.83 - samples/sec: 1376.21 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:14:08,037 epoch 5 - iter 36/48 - loss 0.12098463 - time (sec): 18.34 - samples/sec: 1400.80 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:14:10,603 epoch 5 - iter 40/48 - loss 0.11599874 - time (sec): 20.90 - samples/sec: 1359.09 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:14:12,737 epoch 5 - iter 44/48 - loss 0.11697148 - time (sec): 23.04 - samples/sec: 1373.23 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:14:14,708 epoch 5 - iter 48/48 - loss 0.11878602 - time (sec): 25.01 - samples/sec: 1378.39 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:14:14,708 ----------------------------------------------------------------------------------------------------
2024-03-26 11:14:14,709 EPOCH 5 done: loss 0.1188 - lr: 0.000017
2024-03-26 11:14:15,653 DEV : loss 0.20735225081443787 - f1-score (micro avg)  0.8886
2024-03-26 11:14:15,654 saving best model
2024-03-26 11:14:16,137 ----------------------------------------------------------------------------------------------------
2024-03-26 11:14:17,840 epoch 6 - iter 4/48 - loss 0.11428082 - time (sec): 1.70 - samples/sec: 1463.60 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:14:20,285 epoch 6 - iter 8/48 - loss 0.10615835 - time (sec): 4.15 - samples/sec: 1543.50 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:14:22,266 epoch 6 - iter 12/48 - loss 0.09809695 - time (sec): 6.13 - samples/sec: 1478.37 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:14:24,383 epoch 6 - iter 16/48 - loss 0.09716603 - time (sec): 8.24 - samples/sec: 1470.82 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:14:27,150 epoch 6 - iter 20/48 - loss 0.09527628 - time (sec): 11.01 - samples/sec: 1450.83 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:14:28,723 epoch 6 - iter 24/48 - loss 0.10550915 - time (sec): 12.58 - samples/sec: 1470.85 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:14:30,147 epoch 6 - iter 28/48 - loss 0.10560312 - time (sec): 14.01 - samples/sec: 1475.45 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:14:31,356 epoch 6 - iter 32/48 - loss 0.10260877 - time (sec): 15.22 - samples/sec: 1495.04 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:14:32,882 epoch 6 - iter 36/48 - loss 0.09749042 - time (sec): 16.74 - samples/sec: 1524.96 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:14:34,858 epoch 6 - iter 40/48 - loss 0.09905047 - time (sec): 18.72 - samples/sec: 1513.84 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:14:37,140 epoch 6 - iter 44/48 - loss 0.09659837 - time (sec): 21.00 - samples/sec: 1531.03 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:14:38,883 epoch 6 - iter 48/48 - loss 0.09620050 - time (sec): 22.74 - samples/sec: 1515.63 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:14:38,883 ----------------------------------------------------------------------------------------------------
2024-03-26 11:14:38,883 EPOCH 6 done: loss 0.0962 - lr: 0.000014
2024-03-26 11:14:39,836 DEV : loss 0.18259809911251068 - f1-score (micro avg)  0.9103
2024-03-26 11:14:39,837 saving best model
2024-03-26 11:14:40,303 ----------------------------------------------------------------------------------------------------
2024-03-26 11:14:41,940 epoch 7 - iter 4/48 - loss 0.06204275 - time (sec): 1.64 - samples/sec: 1488.75 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:14:43,601 epoch 7 - iter 8/48 - loss 0.08162162 - time (sec): 3.30 - samples/sec: 1502.42 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:14:45,773 epoch 7 - iter 12/48 - loss 0.07584555 - time (sec): 5.47 - samples/sec: 1439.06 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:14:47,847 epoch 7 - iter 16/48 - loss 0.07316749 - time (sec): 7.54 - samples/sec: 1477.06 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:14:48,507 epoch 7 - iter 20/48 - loss 0.06894237 - time (sec): 8.20 - samples/sec: 1579.88 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:14:50,098 epoch 7 - iter 24/48 - loss 0.06789884 - time (sec): 9.79 - samples/sec: 1564.39 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:14:53,003 epoch 7 - iter 28/48 - loss 0.06686264 - time (sec): 12.70 - samples/sec: 1466.57 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:14:55,810 epoch 7 - iter 32/48 - loss 0.06577245 - time (sec): 15.51 - samples/sec: 1397.17 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:14:58,649 epoch 7 - iter 36/48 - loss 0.07040216 - time (sec): 18.34 - samples/sec: 1405.31 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:15:00,626 epoch 7 - iter 40/48 - loss 0.07466776 - time (sec): 20.32 - samples/sec: 1414.61 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:15:03,204 epoch 7 - iter 44/48 - loss 0.07480391 - time (sec): 22.90 - samples/sec: 1390.99 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:15:05,048 epoch 7 - iter 48/48 - loss 0.07371206 - time (sec): 24.74 - samples/sec: 1393.15 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:15:05,048 ----------------------------------------------------------------------------------------------------
2024-03-26 11:15:05,048 EPOCH 7 done: loss 0.0737 - lr: 0.000010
2024-03-26 11:15:06,019 DEV : loss 0.1877364218235016 - f1-score (micro avg)  0.9073
2024-03-26 11:15:06,020 ----------------------------------------------------------------------------------------------------
2024-03-26 11:15:08,718 epoch 8 - iter 4/48 - loss 0.07579462 - time (sec): 2.70 - samples/sec: 1224.41 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:15:10,839 epoch 8 - iter 8/48 - loss 0.05991518 - time (sec): 4.82 - samples/sec: 1217.82 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:15:14,025 epoch 8 - iter 12/48 - loss 0.05723449 - time (sec): 8.00 - samples/sec: 1210.78 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:15:16,001 epoch 8 - iter 16/48 - loss 0.06624845 - time (sec): 9.98 - samples/sec: 1236.69 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:15:17,487 epoch 8 - iter 20/48 - loss 0.06264195 - time (sec): 11.47 - samples/sec: 1280.67 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:15:20,048 epoch 8 - iter 24/48 - loss 0.06002540 - time (sec): 14.03 - samples/sec: 1272.13 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:15:21,828 epoch 8 - iter 28/48 - loss 0.06409926 - time (sec): 15.81 - samples/sec: 1308.14 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:15:23,457 epoch 8 - iter 32/48 - loss 0.06212462 - time (sec): 17.44 - samples/sec: 1334.23 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:15:24,748 epoch 8 - iter 36/48 - loss 0.06077673 - time (sec): 18.73 - samples/sec: 1366.08 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:15:27,154 epoch 8 - iter 40/48 - loss 0.06101414 - time (sec): 21.13 - samples/sec: 1371.91 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:15:30,041 epoch 8 - iter 44/48 - loss 0.05819661 - time (sec): 24.02 - samples/sec: 1341.24 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:15:32,117 epoch 8 - iter 48/48 - loss 0.05850858 - time (sec): 26.10 - samples/sec: 1320.96 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:15:32,117 ----------------------------------------------------------------------------------------------------
2024-03-26 11:15:32,117 EPOCH 8 done: loss 0.0585 - lr: 0.000007
2024-03-26 11:15:33,074 DEV : loss 0.18553169071674347 - f1-score (micro avg)  0.9269
2024-03-26 11:15:33,075 saving best model
2024-03-26 11:15:33,555 ----------------------------------------------------------------------------------------------------
2024-03-26 11:15:35,421 epoch 9 - iter 4/48 - loss 0.05732311 - time (sec): 1.86 - samples/sec: 1525.50 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:15:37,946 epoch 9 - iter 8/48 - loss 0.04919745 - time (sec): 4.39 - samples/sec: 1397.05 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:15:40,357 epoch 9 - iter 12/48 - loss 0.06047389 - time (sec): 6.80 - samples/sec: 1357.42 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:15:42,457 epoch 9 - iter 16/48 - loss 0.06071694 - time (sec): 8.90 - samples/sec: 1358.99 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:15:43,964 epoch 9 - iter 20/48 - loss 0.05316476 - time (sec): 10.41 - samples/sec: 1416.10 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:15:45,205 epoch 9 - iter 24/48 - loss 0.05009929 - time (sec): 11.65 - samples/sec: 1462.49 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:15:46,906 epoch 9 - iter 28/48 - loss 0.04927559 - time (sec): 13.35 - samples/sec: 1481.52 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:15:49,258 epoch 9 - iter 32/48 - loss 0.05509981 - time (sec): 15.70 - samples/sec: 1464.55 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:15:51,996 epoch 9 - iter 36/48 - loss 0.05508145 - time (sec): 18.44 - samples/sec: 1416.65 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:15:54,978 epoch 9 - iter 40/48 - loss 0.05449908 - time (sec): 21.42 - samples/sec: 1375.91 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:15:56,846 epoch 9 - iter 44/48 - loss 0.05400296 - time (sec): 23.29 - samples/sec: 1390.32 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:15:57,905 epoch 9 - iter 48/48 - loss 0.05389343 - time (sec): 24.35 - samples/sec: 1415.78 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:15:57,905 ----------------------------------------------------------------------------------------------------
2024-03-26 11:15:57,905 EPOCH 9 done: loss 0.0539 - lr: 0.000004
2024-03-26 11:15:58,855 DEV : loss 0.1756318360567093 - f1-score (micro avg)  0.9235
2024-03-26 11:15:58,857 ----------------------------------------------------------------------------------------------------
2024-03-26 11:16:01,220 epoch 10 - iter 4/48 - loss 0.02756730 - time (sec): 2.36 - samples/sec: 1397.98 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:16:03,396 epoch 10 - iter 8/48 - loss 0.03411980 - time (sec): 4.54 - samples/sec: 1361.41 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:16:05,325 epoch 10 - iter 12/48 - loss 0.03366891 - time (sec): 6.47 - samples/sec: 1364.60 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:16:06,556 epoch 10 - iter 16/48 - loss 0.03593148 - time (sec): 7.70 - samples/sec: 1431.57 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:16:08,558 epoch 10 - iter 20/48 - loss 0.04270731 - time (sec): 9.70 - samples/sec: 1413.16 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:16:10,903 epoch 10 - iter 24/48 - loss 0.05028433 - time (sec): 12.04 - samples/sec: 1378.76 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:16:11,805 epoch 10 - iter 28/48 - loss 0.05128601 - time (sec): 12.95 - samples/sec: 1451.20 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:16:13,125 epoch 10 - iter 32/48 - loss 0.04953866 - time (sec): 14.27 - samples/sec: 1488.71 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:16:15,943 epoch 10 - iter 36/48 - loss 0.04689467 - time (sec): 17.08 - samples/sec: 1445.36 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:16:18,324 epoch 10 - iter 40/48 - loss 0.04744759 - time (sec): 19.47 - samples/sec: 1477.13 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:16:20,948 epoch 10 - iter 44/48 - loss 0.04670001 - time (sec): 22.09 - samples/sec: 1451.98 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:16:22,941 epoch 10 - iter 48/48 - loss 0.04566351 - time (sec): 24.08 - samples/sec: 1431.38 - lr: 0.000000 - momentum: 0.000000
2024-03-26 11:16:22,942 ----------------------------------------------------------------------------------------------------
2024-03-26 11:16:22,942 EPOCH 10 done: loss 0.0457 - lr: 0.000000
2024-03-26 11:16:23,896 DEV : loss 0.18053248524665833 - f1-score (micro avg)  0.9227
2024-03-26 11:16:24,184 ----------------------------------------------------------------------------------------------------
2024-03-26 11:16:24,185 Loading model from best epoch ...
2024-03-26 11:16:25,052 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 11:16:25,801 
Results:
- F-score (micro) 0.8963
- F-score (macro) 0.6819
- Accuracy 0.8144

By class:
              precision    recall  f1-score   support

 Unternehmen     0.8859    0.8759    0.8809       266
 Auslagerung     0.8577    0.8956    0.8762       249
         Ort     0.9565    0.9851    0.9706       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.8869    0.9060    0.8963       649
   macro avg     0.6750    0.6891    0.6819       649
weighted avg     0.8897    0.9060    0.8976       649

2024-03-26 11:16:25,801 ----------------------------------------------------------------------------------------------------