File size: 23,968 Bytes
e006c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-13 08:23:28,457 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,458 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 08:23:28,458 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,458 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:23:28,459 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,459 Train:  1100 sentences
2023-10-13 08:23:28,459         (train_with_dev=False, train_with_test=False)
2023-10-13 08:23:28,459 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,459 Training Params:
2023-10-13 08:23:28,459  - learning_rate: "5e-05" 
2023-10-13 08:23:28,459  - mini_batch_size: "4"
2023-10-13 08:23:28,459  - max_epochs: "10"
2023-10-13 08:23:28,459  - shuffle: "True"
2023-10-13 08:23:28,459 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,459 Plugins:
2023-10-13 08:23:28,459  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:23:28,459 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,459 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:23:28,459  - metric: "('micro avg', 'f1-score')"
2023-10-13 08:23:28,459 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,459 Computation:
2023-10-13 08:23:28,459  - compute on device: cuda:0
2023-10-13 08:23:28,459  - embedding storage: none
2023-10-13 08:23:28,459 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,459 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-13 08:23:28,459 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:28,459 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:29,713 epoch 1 - iter 27/275 - loss 3.39902518 - time (sec): 1.25 - samples/sec: 1969.29 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:23:30,927 epoch 1 - iter 54/275 - loss 2.87294952 - time (sec): 2.47 - samples/sec: 1848.98 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:23:32,220 epoch 1 - iter 81/275 - loss 2.22493882 - time (sec): 3.76 - samples/sec: 1786.06 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:23:33,660 epoch 1 - iter 108/275 - loss 1.83215945 - time (sec): 5.20 - samples/sec: 1792.67 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:23:35,031 epoch 1 - iter 135/275 - loss 1.64868900 - time (sec): 6.57 - samples/sec: 1720.13 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:23:36,334 epoch 1 - iter 162/275 - loss 1.49452799 - time (sec): 7.87 - samples/sec: 1699.63 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:23:37,694 epoch 1 - iter 189/275 - loss 1.36894456 - time (sec): 9.23 - samples/sec: 1700.21 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:23:39,006 epoch 1 - iter 216/275 - loss 1.22942202 - time (sec): 10.55 - samples/sec: 1725.70 - lr: 0.000039 - momentum: 0.000000
2023-10-13 08:23:40,220 epoch 1 - iter 243/275 - loss 1.13670758 - time (sec): 11.76 - samples/sec: 1724.96 - lr: 0.000044 - momentum: 0.000000
2023-10-13 08:23:41,359 epoch 1 - iter 270/275 - loss 1.06530735 - time (sec): 12.90 - samples/sec: 1733.69 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:23:41,573 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:41,573 EPOCH 1 done: loss 1.0497 - lr: 0.000049
2023-10-13 08:23:42,353 DEV : loss 0.23358413577079773 - f1-score (micro avg)  0.712
2023-10-13 08:23:42,359 saving best model
2023-10-13 08:23:42,664 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:43,803 epoch 2 - iter 27/275 - loss 0.22629551 - time (sec): 1.14 - samples/sec: 2200.36 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:23:44,988 epoch 2 - iter 54/275 - loss 0.22270726 - time (sec): 2.32 - samples/sec: 1883.93 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:23:46,161 epoch 2 - iter 81/275 - loss 0.20667117 - time (sec): 3.50 - samples/sec: 1907.77 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:23:47,326 epoch 2 - iter 108/275 - loss 0.20192750 - time (sec): 4.66 - samples/sec: 1895.84 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:23:48,510 epoch 2 - iter 135/275 - loss 0.18672772 - time (sec): 5.85 - samples/sec: 1907.29 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:23:49,706 epoch 2 - iter 162/275 - loss 0.18416707 - time (sec): 7.04 - samples/sec: 1891.22 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:23:50,882 epoch 2 - iter 189/275 - loss 0.17608829 - time (sec): 8.22 - samples/sec: 1881.81 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:23:52,157 epoch 2 - iter 216/275 - loss 0.18436043 - time (sec): 9.49 - samples/sec: 1882.30 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:23:53,374 epoch 2 - iter 243/275 - loss 0.18599630 - time (sec): 10.71 - samples/sec: 1873.54 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:23:54,579 epoch 2 - iter 270/275 - loss 0.18136454 - time (sec): 11.91 - samples/sec: 1878.19 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:23:54,796 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:54,796 EPOCH 2 done: loss 0.1794 - lr: 0.000045
2023-10-13 08:23:55,430 DEV : loss 0.1404486447572708 - f1-score (micro avg)  0.8351
2023-10-13 08:23:55,435 saving best model
2023-10-13 08:23:55,832 ----------------------------------------------------------------------------------------------------
2023-10-13 08:23:57,062 epoch 3 - iter 27/275 - loss 0.13376844 - time (sec): 1.23 - samples/sec: 1664.30 - lr: 0.000044 - momentum: 0.000000
2023-10-13 08:23:58,325 epoch 3 - iter 54/275 - loss 0.12447582 - time (sec): 2.49 - samples/sec: 1721.00 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:23:59,513 epoch 3 - iter 81/275 - loss 0.12212165 - time (sec): 3.68 - samples/sec: 1816.92 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:24:00,638 epoch 3 - iter 108/275 - loss 0.12004262 - time (sec): 4.80 - samples/sec: 1865.63 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:24:01,789 epoch 3 - iter 135/275 - loss 0.11280775 - time (sec): 5.95 - samples/sec: 1881.82 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:24:02,919 epoch 3 - iter 162/275 - loss 0.11290164 - time (sec): 7.08 - samples/sec: 1872.88 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:24:04,064 epoch 3 - iter 189/275 - loss 0.10849768 - time (sec): 8.23 - samples/sec: 1893.46 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:24:05,201 epoch 3 - iter 216/275 - loss 0.10865497 - time (sec): 9.37 - samples/sec: 1876.12 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:24:06,339 epoch 3 - iter 243/275 - loss 0.11196281 - time (sec): 10.50 - samples/sec: 1901.51 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:24:07,481 epoch 3 - iter 270/275 - loss 0.11441067 - time (sec): 11.65 - samples/sec: 1920.62 - lr: 0.000039 - momentum: 0.000000
2023-10-13 08:24:07,696 ----------------------------------------------------------------------------------------------------
2023-10-13 08:24:07,696 EPOCH 3 done: loss 0.1137 - lr: 0.000039
2023-10-13 08:24:08,424 DEV : loss 0.15840192139148712 - f1-score (micro avg)  0.8302
2023-10-13 08:24:08,429 ----------------------------------------------------------------------------------------------------
2023-10-13 08:24:09,612 epoch 4 - iter 27/275 - loss 0.04289286 - time (sec): 1.18 - samples/sec: 1851.60 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:24:10,803 epoch 4 - iter 54/275 - loss 0.06359151 - time (sec): 2.37 - samples/sec: 1929.20 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:24:12,019 epoch 4 - iter 81/275 - loss 0.07865884 - time (sec): 3.59 - samples/sec: 1878.36 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:24:13,185 epoch 4 - iter 108/275 - loss 0.07465091 - time (sec): 4.75 - samples/sec: 1881.82 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:24:14,321 epoch 4 - iter 135/275 - loss 0.07631322 - time (sec): 5.89 - samples/sec: 1899.14 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:24:15,447 epoch 4 - iter 162/275 - loss 0.07773191 - time (sec): 7.02 - samples/sec: 1902.07 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:24:16,633 epoch 4 - iter 189/275 - loss 0.08141307 - time (sec): 8.20 - samples/sec: 1881.63 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:24:17,925 epoch 4 - iter 216/275 - loss 0.08450300 - time (sec): 9.50 - samples/sec: 1845.11 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:24:19,163 epoch 4 - iter 243/275 - loss 0.08201415 - time (sec): 10.73 - samples/sec: 1882.05 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:24:20,306 epoch 4 - iter 270/275 - loss 0.08401559 - time (sec): 11.88 - samples/sec: 1886.45 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:24:20,525 ----------------------------------------------------------------------------------------------------
2023-10-13 08:24:20,525 EPOCH 4 done: loss 0.0837 - lr: 0.000034
2023-10-13 08:24:21,177 DEV : loss 0.14714744687080383 - f1-score (micro avg)  0.8547
2023-10-13 08:24:21,182 saving best model
2023-10-13 08:24:21,610 ----------------------------------------------------------------------------------------------------
2023-10-13 08:24:22,819 epoch 5 - iter 27/275 - loss 0.05779460 - time (sec): 1.21 - samples/sec: 1938.10 - lr: 0.000033 - momentum: 0.000000
2023-10-13 08:24:24,023 epoch 5 - iter 54/275 - loss 0.05731164 - time (sec): 2.41 - samples/sec: 1900.43 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:24:25,225 epoch 5 - iter 81/275 - loss 0.08359211 - time (sec): 3.61 - samples/sec: 1842.00 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:24:26,431 epoch 5 - iter 108/275 - loss 0.07736091 - time (sec): 4.82 - samples/sec: 1829.20 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:24:27,694 epoch 5 - iter 135/275 - loss 0.07574006 - time (sec): 6.08 - samples/sec: 1834.90 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:24:29,106 epoch 5 - iter 162/275 - loss 0.06984948 - time (sec): 7.49 - samples/sec: 1784.72 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:24:30,362 epoch 5 - iter 189/275 - loss 0.06945974 - time (sec): 8.75 - samples/sec: 1786.23 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:24:31,586 epoch 5 - iter 216/275 - loss 0.06498528 - time (sec): 9.97 - samples/sec: 1764.83 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:24:32,793 epoch 5 - iter 243/275 - loss 0.06206434 - time (sec): 11.18 - samples/sec: 1778.79 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:24:34,068 epoch 5 - iter 270/275 - loss 0.05930514 - time (sec): 12.46 - samples/sec: 1784.40 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:24:34,302 ----------------------------------------------------------------------------------------------------
2023-10-13 08:24:34,303 EPOCH 5 done: loss 0.0589 - lr: 0.000028
2023-10-13 08:24:34,992 DEV : loss 0.1557360142469406 - f1-score (micro avg)  0.8764
2023-10-13 08:24:34,997 saving best model
2023-10-13 08:24:35,442 ----------------------------------------------------------------------------------------------------
2023-10-13 08:24:36,671 epoch 6 - iter 27/275 - loss 0.04213156 - time (sec): 1.23 - samples/sec: 1852.26 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:24:37,953 epoch 6 - iter 54/275 - loss 0.03746027 - time (sec): 2.51 - samples/sec: 1816.43 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:24:39,206 epoch 6 - iter 81/275 - loss 0.04423429 - time (sec): 3.76 - samples/sec: 1804.54 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:24:40,446 epoch 6 - iter 108/275 - loss 0.04302431 - time (sec): 5.00 - samples/sec: 1789.35 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:24:41,727 epoch 6 - iter 135/275 - loss 0.05133329 - time (sec): 6.28 - samples/sec: 1757.54 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:24:42,990 epoch 6 - iter 162/275 - loss 0.05113197 - time (sec): 7.55 - samples/sec: 1765.51 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:24:44,219 epoch 6 - iter 189/275 - loss 0.04766058 - time (sec): 8.78 - samples/sec: 1768.40 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:24:45,401 epoch 6 - iter 216/275 - loss 0.04578779 - time (sec): 9.96 - samples/sec: 1786.38 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:24:46,595 epoch 6 - iter 243/275 - loss 0.04590030 - time (sec): 11.15 - samples/sec: 1802.26 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:24:47,779 epoch 6 - iter 270/275 - loss 0.04431936 - time (sec): 12.34 - samples/sec: 1811.08 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:24:48,013 ----------------------------------------------------------------------------------------------------
2023-10-13 08:24:48,014 EPOCH 6 done: loss 0.0439 - lr: 0.000022
2023-10-13 08:24:48,683 DEV : loss 0.1554672122001648 - f1-score (micro avg)  0.8743
2023-10-13 08:24:48,688 ----------------------------------------------------------------------------------------------------
2023-10-13 08:24:49,910 epoch 7 - iter 27/275 - loss 0.00825223 - time (sec): 1.22 - samples/sec: 1803.21 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:24:51,120 epoch 7 - iter 54/275 - loss 0.01703077 - time (sec): 2.43 - samples/sec: 1833.99 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:24:52,305 epoch 7 - iter 81/275 - loss 0.01503006 - time (sec): 3.62 - samples/sec: 1784.71 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:24:53,481 epoch 7 - iter 108/275 - loss 0.01992351 - time (sec): 4.79 - samples/sec: 1859.00 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:24:54,668 epoch 7 - iter 135/275 - loss 0.02086434 - time (sec): 5.98 - samples/sec: 1889.01 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:24:55,847 epoch 7 - iter 162/275 - loss 0.02398405 - time (sec): 7.16 - samples/sec: 1861.64 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:24:57,072 epoch 7 - iter 189/275 - loss 0.02918174 - time (sec): 8.38 - samples/sec: 1867.97 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:24:58,265 epoch 7 - iter 216/275 - loss 0.03306324 - time (sec): 9.58 - samples/sec: 1879.74 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:24:59,466 epoch 7 - iter 243/275 - loss 0.03076299 - time (sec): 10.78 - samples/sec: 1864.56 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:25:00,706 epoch 7 - iter 270/275 - loss 0.02969565 - time (sec): 12.02 - samples/sec: 1859.25 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:25:00,936 ----------------------------------------------------------------------------------------------------
2023-10-13 08:25:00,936 EPOCH 7 done: loss 0.0296 - lr: 0.000017
2023-10-13 08:25:01,676 DEV : loss 0.16044297814369202 - f1-score (micro avg)  0.8674
2023-10-13 08:25:01,681 ----------------------------------------------------------------------------------------------------
2023-10-13 08:25:02,895 epoch 8 - iter 27/275 - loss 0.01298090 - time (sec): 1.21 - samples/sec: 1819.31 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:25:04,040 epoch 8 - iter 54/275 - loss 0.01025808 - time (sec): 2.36 - samples/sec: 1864.63 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:25:05,158 epoch 8 - iter 81/275 - loss 0.02586707 - time (sec): 3.48 - samples/sec: 1922.68 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:25:06,302 epoch 8 - iter 108/275 - loss 0.02302143 - time (sec): 4.62 - samples/sec: 1893.34 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:25:07,452 epoch 8 - iter 135/275 - loss 0.02504169 - time (sec): 5.77 - samples/sec: 1924.32 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:25:08,584 epoch 8 - iter 162/275 - loss 0.02809093 - time (sec): 6.90 - samples/sec: 1929.19 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:25:09,738 epoch 8 - iter 189/275 - loss 0.02567335 - time (sec): 8.06 - samples/sec: 1969.05 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:25:10,876 epoch 8 - iter 216/275 - loss 0.02470403 - time (sec): 9.19 - samples/sec: 1955.90 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:25:12,026 epoch 8 - iter 243/275 - loss 0.02352710 - time (sec): 10.34 - samples/sec: 1958.69 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:25:13,220 epoch 8 - iter 270/275 - loss 0.02178292 - time (sec): 11.54 - samples/sec: 1936.47 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:25:13,440 ----------------------------------------------------------------------------------------------------
2023-10-13 08:25:13,441 EPOCH 8 done: loss 0.0223 - lr: 0.000011
2023-10-13 08:25:14,105 DEV : loss 0.1707383543252945 - f1-score (micro avg)  0.8756
2023-10-13 08:25:14,110 ----------------------------------------------------------------------------------------------------
2023-10-13 08:25:15,267 epoch 9 - iter 27/275 - loss 0.00650434 - time (sec): 1.16 - samples/sec: 1932.08 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:25:16,425 epoch 9 - iter 54/275 - loss 0.01111044 - time (sec): 2.31 - samples/sec: 1917.46 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:25:17,602 epoch 9 - iter 81/275 - loss 0.01080575 - time (sec): 3.49 - samples/sec: 1910.45 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:25:18,771 epoch 9 - iter 108/275 - loss 0.01282098 - time (sec): 4.66 - samples/sec: 1925.84 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:25:19,914 epoch 9 - iter 135/275 - loss 0.01581696 - time (sec): 5.80 - samples/sec: 1961.44 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:25:21,172 epoch 9 - iter 162/275 - loss 0.01560980 - time (sec): 7.06 - samples/sec: 1918.53 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:25:22,356 epoch 9 - iter 189/275 - loss 0.01591003 - time (sec): 8.24 - samples/sec: 1898.82 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:25:23,524 epoch 9 - iter 216/275 - loss 0.01508954 - time (sec): 9.41 - samples/sec: 1920.66 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:25:24,711 epoch 9 - iter 243/275 - loss 0.01646518 - time (sec): 10.60 - samples/sec: 1908.94 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:25:25,918 epoch 9 - iter 270/275 - loss 0.01574494 - time (sec): 11.81 - samples/sec: 1893.24 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:25:26,130 ----------------------------------------------------------------------------------------------------
2023-10-13 08:25:26,131 EPOCH 9 done: loss 0.0155 - lr: 0.000006
2023-10-13 08:25:26,778 DEV : loss 0.16440145671367645 - f1-score (micro avg)  0.8822
2023-10-13 08:25:26,783 saving best model
2023-10-13 08:25:27,228 ----------------------------------------------------------------------------------------------------
2023-10-13 08:25:28,414 epoch 10 - iter 27/275 - loss 0.01136074 - time (sec): 1.18 - samples/sec: 2111.51 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:25:29,580 epoch 10 - iter 54/275 - loss 0.00715528 - time (sec): 2.35 - samples/sec: 1898.66 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:25:30,739 epoch 10 - iter 81/275 - loss 0.01069227 - time (sec): 3.51 - samples/sec: 1922.98 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:25:31,958 epoch 10 - iter 108/275 - loss 0.00857349 - time (sec): 4.73 - samples/sec: 1884.88 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:25:33,136 epoch 10 - iter 135/275 - loss 0.00833031 - time (sec): 5.91 - samples/sec: 1841.81 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:25:34,329 epoch 10 - iter 162/275 - loss 0.00906827 - time (sec): 7.10 - samples/sec: 1870.17 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:25:35,521 epoch 10 - iter 189/275 - loss 0.00820492 - time (sec): 8.29 - samples/sec: 1910.26 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:25:36,693 epoch 10 - iter 216/275 - loss 0.00800912 - time (sec): 9.46 - samples/sec: 1893.25 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:25:37,866 epoch 10 - iter 243/275 - loss 0.01035358 - time (sec): 10.64 - samples/sec: 1892.33 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:25:39,051 epoch 10 - iter 270/275 - loss 0.01116386 - time (sec): 11.82 - samples/sec: 1882.19 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:25:39,268 ----------------------------------------------------------------------------------------------------
2023-10-13 08:25:39,268 EPOCH 10 done: loss 0.0111 - lr: 0.000000
2023-10-13 08:25:39,961 DEV : loss 0.16304759681224823 - f1-score (micro avg)  0.8849
2023-10-13 08:25:39,966 saving best model
2023-10-13 08:25:40,728 ----------------------------------------------------------------------------------------------------
2023-10-13 08:25:40,729 Loading model from best epoch ...
2023-10-13 08:25:42,242 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:25:42,961 
Results:
- F-score (micro) 0.9041
- F-score (macro) 0.8083
- Accuracy 0.8411

By class:
              precision    recall  f1-score   support

       scope     0.8876    0.8977    0.8927       176
        pers     0.9524    0.9375    0.9449       128
        work     0.8767    0.8649    0.8707        74
      object     1.0000    0.5000    0.6667         2
         loc     1.0000    0.5000    0.6667         2

   micro avg     0.9077    0.9005    0.9041       382
   macro avg     0.9433    0.7400    0.8083       382
weighted avg     0.9084    0.9005    0.9035       382

2023-10-13 08:25:42,961 ----------------------------------------------------------------------------------------------------