File size: 24,030 Bytes
ad21869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2023-10-13 08:26:08,641 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,642 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 08:26:08,643 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,643 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:26:08,643 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,643 Train:  1100 sentences
2023-10-13 08:26:08,643         (train_with_dev=False, train_with_test=False)
2023-10-13 08:26:08,643 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,643 Training Params:
2023-10-13 08:26:08,643  - learning_rate: "3e-05" 
2023-10-13 08:26:08,643  - mini_batch_size: "8"
2023-10-13 08:26:08,643  - max_epochs: "10"
2023-10-13 08:26:08,643  - shuffle: "True"
2023-10-13 08:26:08,643 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,643 Plugins:
2023-10-13 08:26:08,643  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:26:08,643 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,643 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:26:08,643  - metric: "('micro avg', 'f1-score')"
2023-10-13 08:26:08,643 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,643 Computation:
2023-10-13 08:26:08,644  - compute on device: cuda:0
2023-10-13 08:26:08,644  - embedding storage: none
2023-10-13 08:26:08,644 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,644 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-13 08:26:08,644 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:08,644 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:09,422 epoch 1 - iter 13/138 - loss 3.69385232 - time (sec): 0.78 - samples/sec: 3038.15 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:26:10,209 epoch 1 - iter 26/138 - loss 3.48751350 - time (sec): 1.56 - samples/sec: 2794.15 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:26:10,915 epoch 1 - iter 39/138 - loss 3.14421571 - time (sec): 2.27 - samples/sec: 2861.72 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:26:11,700 epoch 1 - iter 52/138 - loss 2.55104060 - time (sec): 3.06 - samples/sec: 2958.09 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:26:12,383 epoch 1 - iter 65/138 - loss 2.27203720 - time (sec): 3.74 - samples/sec: 2925.20 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:26:13,075 epoch 1 - iter 78/138 - loss 2.05008068 - time (sec): 4.43 - samples/sec: 2937.45 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:26:13,765 epoch 1 - iter 91/138 - loss 1.90458869 - time (sec): 5.12 - samples/sec: 2929.88 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:26:14,469 epoch 1 - iter 104/138 - loss 1.74598608 - time (sec): 5.82 - samples/sec: 3002.95 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:26:15,175 epoch 1 - iter 117/138 - loss 1.62592389 - time (sec): 6.53 - samples/sec: 2999.69 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:26:15,861 epoch 1 - iter 130/138 - loss 1.53245007 - time (sec): 7.22 - samples/sec: 2988.19 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:26:16,273 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:16,273 EPOCH 1 done: loss 1.4877 - lr: 0.000028
2023-10-13 08:26:17,009 DEV : loss 0.4509204924106598 - f1-score (micro avg)  0.252
2023-10-13 08:26:17,014 saving best model
2023-10-13 08:26:17,324 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:18,094 epoch 2 - iter 13/138 - loss 0.42619151 - time (sec): 0.77 - samples/sec: 3139.00 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:26:18,813 epoch 2 - iter 26/138 - loss 0.42325569 - time (sec): 1.49 - samples/sec: 2842.22 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:26:19,574 epoch 2 - iter 39/138 - loss 0.40997183 - time (sec): 2.25 - samples/sec: 2873.00 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:26:20,308 epoch 2 - iter 52/138 - loss 0.38690384 - time (sec): 2.98 - samples/sec: 2847.84 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:26:21,088 epoch 2 - iter 65/138 - loss 0.35398854 - time (sec): 3.76 - samples/sec: 2828.03 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:26:21,829 epoch 2 - iter 78/138 - loss 0.34914707 - time (sec): 4.50 - samples/sec: 2839.82 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:26:22,619 epoch 2 - iter 91/138 - loss 0.33145623 - time (sec): 5.29 - samples/sec: 2804.89 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:26:23,354 epoch 2 - iter 104/138 - loss 0.32408274 - time (sec): 6.03 - samples/sec: 2836.09 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:26:24,107 epoch 2 - iter 117/138 - loss 0.31812163 - time (sec): 6.78 - samples/sec: 2840.83 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:26:24,862 epoch 2 - iter 130/138 - loss 0.30813736 - time (sec): 7.54 - samples/sec: 2864.21 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:26:25,257 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:25,257 EPOCH 2 done: loss 0.3027 - lr: 0.000027
2023-10-13 08:26:25,943 DEV : loss 0.17636282742023468 - f1-score (micro avg)  0.778
2023-10-13 08:26:25,948 saving best model
2023-10-13 08:26:26,398 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:27,114 epoch 3 - iter 13/138 - loss 0.19209402 - time (sec): 0.71 - samples/sec: 2745.27 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:26:27,844 epoch 3 - iter 26/138 - loss 0.17352554 - time (sec): 1.44 - samples/sec: 2823.15 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:26:28,634 epoch 3 - iter 39/138 - loss 0.15390368 - time (sec): 2.23 - samples/sec: 2883.66 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:26:29,333 epoch 3 - iter 52/138 - loss 0.15118087 - time (sec): 2.93 - samples/sec: 2943.74 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:26:30,113 epoch 3 - iter 65/138 - loss 0.14765733 - time (sec): 3.71 - samples/sec: 2924.73 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:26:30,808 epoch 3 - iter 78/138 - loss 0.14673277 - time (sec): 4.41 - samples/sec: 2912.56 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:26:31,557 epoch 3 - iter 91/138 - loss 0.14147220 - time (sec): 5.16 - samples/sec: 2928.81 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:26:32,243 epoch 3 - iter 104/138 - loss 0.14096598 - time (sec): 5.84 - samples/sec: 2920.42 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:26:32,960 epoch 3 - iter 117/138 - loss 0.14195431 - time (sec): 6.56 - samples/sec: 2918.85 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:26:33,700 epoch 3 - iter 130/138 - loss 0.14176228 - time (sec): 7.30 - samples/sec: 2926.93 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:26:34,155 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:34,156 EPOCH 3 done: loss 0.1380 - lr: 0.000024
2023-10-13 08:26:34,849 DEV : loss 0.143646240234375 - f1-score (micro avg)  0.8205
2023-10-13 08:26:34,855 saving best model
2023-10-13 08:26:35,284 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:35,970 epoch 4 - iter 13/138 - loss 0.08454532 - time (sec): 0.68 - samples/sec: 3075.26 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:26:36,679 epoch 4 - iter 26/138 - loss 0.08622317 - time (sec): 1.39 - samples/sec: 3188.79 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:26:37,419 epoch 4 - iter 39/138 - loss 0.08311552 - time (sec): 2.13 - samples/sec: 3020.59 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:26:38,143 epoch 4 - iter 52/138 - loss 0.08780046 - time (sec): 2.86 - samples/sec: 3015.55 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:26:38,891 epoch 4 - iter 65/138 - loss 0.09046928 - time (sec): 3.61 - samples/sec: 2989.97 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:26:39,603 epoch 4 - iter 78/138 - loss 0.08806674 - time (sec): 4.32 - samples/sec: 2967.54 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:26:40,326 epoch 4 - iter 91/138 - loss 0.09086554 - time (sec): 5.04 - samples/sec: 2956.46 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:26:41,041 epoch 4 - iter 104/138 - loss 0.09148364 - time (sec): 5.75 - samples/sec: 2937.77 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:26:41,774 epoch 4 - iter 117/138 - loss 0.08793837 - time (sec): 6.49 - samples/sec: 2965.76 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:26:42,559 epoch 4 - iter 130/138 - loss 0.08716024 - time (sec): 7.27 - samples/sec: 2967.65 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:26:42,991 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:42,991 EPOCH 4 done: loss 0.0879 - lr: 0.000020
2023-10-13 08:26:43,743 DEV : loss 0.11688197404146194 - f1-score (micro avg)  0.8363
2023-10-13 08:26:43,751 saving best model
2023-10-13 08:26:44,217 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:44,914 epoch 5 - iter 13/138 - loss 0.06018758 - time (sec): 0.70 - samples/sec: 3152.46 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:26:45,613 epoch 5 - iter 26/138 - loss 0.05888432 - time (sec): 1.40 - samples/sec: 3154.60 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:26:46,320 epoch 5 - iter 39/138 - loss 0.07909944 - time (sec): 2.10 - samples/sec: 3081.62 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:26:47,012 epoch 5 - iter 52/138 - loss 0.07517801 - time (sec): 2.79 - samples/sec: 3044.85 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:26:47,695 epoch 5 - iter 65/138 - loss 0.07414495 - time (sec): 3.48 - samples/sec: 3081.70 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:26:48,384 epoch 5 - iter 78/138 - loss 0.06957352 - time (sec): 4.17 - samples/sec: 3091.23 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:26:49,177 epoch 5 - iter 91/138 - loss 0.07023772 - time (sec): 4.96 - samples/sec: 3029.09 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:26:49,892 epoch 5 - iter 104/138 - loss 0.06663683 - time (sec): 5.67 - samples/sec: 3001.18 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:26:50,631 epoch 5 - iter 117/138 - loss 0.06142101 - time (sec): 6.41 - samples/sec: 2987.60 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:26:51,381 epoch 5 - iter 130/138 - loss 0.06264685 - time (sec): 7.16 - samples/sec: 2981.96 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:26:51,831 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:51,831 EPOCH 5 done: loss 0.0616 - lr: 0.000017
2023-10-13 08:26:52,525 DEV : loss 0.13779088854789734 - f1-score (micro avg)  0.8491
2023-10-13 08:26:52,529 saving best model
2023-10-13 08:26:52,961 ----------------------------------------------------------------------------------------------------
2023-10-13 08:26:53,703 epoch 6 - iter 13/138 - loss 0.04866097 - time (sec): 0.74 - samples/sec: 2926.90 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:26:54,438 epoch 6 - iter 26/138 - loss 0.04983253 - time (sec): 1.47 - samples/sec: 3002.73 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:26:55,179 epoch 6 - iter 39/138 - loss 0.04671730 - time (sec): 2.21 - samples/sec: 2963.62 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:26:55,881 epoch 6 - iter 52/138 - loss 0.04256161 - time (sec): 2.91 - samples/sec: 2936.14 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:26:56,642 epoch 6 - iter 65/138 - loss 0.04915792 - time (sec): 3.68 - samples/sec: 2898.60 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:26:57,370 epoch 6 - iter 78/138 - loss 0.05052720 - time (sec): 4.40 - samples/sec: 2902.03 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:26:58,105 epoch 6 - iter 91/138 - loss 0.04712163 - time (sec): 5.14 - samples/sec: 2912.36 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:26:58,791 epoch 6 - iter 104/138 - loss 0.04683642 - time (sec): 5.82 - samples/sec: 2920.37 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:26:59,545 epoch 6 - iter 117/138 - loss 0.04608847 - time (sec): 6.58 - samples/sec: 2921.76 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:27:00,304 epoch 6 - iter 130/138 - loss 0.04480660 - time (sec): 7.34 - samples/sec: 2928.18 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:27:00,745 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:00,745 EPOCH 6 done: loss 0.0445 - lr: 0.000014
2023-10-13 08:27:01,427 DEV : loss 0.15820646286010742 - f1-score (micro avg)  0.8578
2023-10-13 08:27:01,432 saving best model
2023-10-13 08:27:01,866 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:02,596 epoch 7 - iter 13/138 - loss 0.01760101 - time (sec): 0.73 - samples/sec: 2835.15 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:27:03,364 epoch 7 - iter 26/138 - loss 0.01763718 - time (sec): 1.50 - samples/sec: 2876.71 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:27:04,079 epoch 7 - iter 39/138 - loss 0.01604980 - time (sec): 2.21 - samples/sec: 2822.15 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:27:04,825 epoch 7 - iter 52/138 - loss 0.02286619 - time (sec): 2.96 - samples/sec: 2914.57 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:27:05,547 epoch 7 - iter 65/138 - loss 0.02495223 - time (sec): 3.68 - samples/sec: 2919.90 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:27:06,256 epoch 7 - iter 78/138 - loss 0.03142391 - time (sec): 4.39 - samples/sec: 2942.85 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:27:06,968 epoch 7 - iter 91/138 - loss 0.03459948 - time (sec): 5.10 - samples/sec: 2956.26 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:27:07,691 epoch 7 - iter 104/138 - loss 0.04089677 - time (sec): 5.82 - samples/sec: 2977.62 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:27:08,418 epoch 7 - iter 117/138 - loss 0.03890265 - time (sec): 6.55 - samples/sec: 2961.50 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:27:09,142 epoch 7 - iter 130/138 - loss 0.03775231 - time (sec): 7.27 - samples/sec: 2945.83 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:27:09,593 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:09,593 EPOCH 7 done: loss 0.0364 - lr: 0.000010
2023-10-13 08:27:10,332 DEV : loss 0.16149461269378662 - f1-score (micro avg)  0.8694
2023-10-13 08:27:10,341 saving best model
2023-10-13 08:27:10,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:11,670 epoch 8 - iter 13/138 - loss 0.02451766 - time (sec): 0.78 - samples/sec: 2718.28 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:27:12,481 epoch 8 - iter 26/138 - loss 0.01900098 - time (sec): 1.59 - samples/sec: 2654.23 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:27:13,274 epoch 8 - iter 39/138 - loss 0.03325250 - time (sec): 2.39 - samples/sec: 2719.54 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:27:14,039 epoch 8 - iter 52/138 - loss 0.03077508 - time (sec): 3.15 - samples/sec: 2655.42 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:27:14,872 epoch 8 - iter 65/138 - loss 0.02914906 - time (sec): 3.99 - samples/sec: 2673.98 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:27:15,649 epoch 8 - iter 78/138 - loss 0.02905655 - time (sec): 4.76 - samples/sec: 2691.84 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:27:16,390 epoch 8 - iter 91/138 - loss 0.03090136 - time (sec): 5.50 - samples/sec: 2750.11 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:27:17,116 epoch 8 - iter 104/138 - loss 0.02860076 - time (sec): 6.23 - samples/sec: 2779.83 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:27:17,831 epoch 8 - iter 117/138 - loss 0.02699396 - time (sec): 6.95 - samples/sec: 2788.13 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:27:18,668 epoch 8 - iter 130/138 - loss 0.02432561 - time (sec): 7.78 - samples/sec: 2791.72 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:27:19,073 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:19,073 EPOCH 8 done: loss 0.0255 - lr: 0.000007
2023-10-13 08:27:19,745 DEV : loss 0.16744698584079742 - f1-score (micro avg)  0.8701
2023-10-13 08:27:19,751 saving best model
2023-10-13 08:27:20,202 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:20,944 epoch 9 - iter 13/138 - loss 0.00538376 - time (sec): 0.73 - samples/sec: 3011.35 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:27:21,667 epoch 9 - iter 26/138 - loss 0.02331938 - time (sec): 1.45 - samples/sec: 2964.44 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:27:22,408 epoch 9 - iter 39/138 - loss 0.01893327 - time (sec): 2.19 - samples/sec: 2859.27 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:27:23,198 epoch 9 - iter 52/138 - loss 0.01939908 - time (sec): 2.98 - samples/sec: 2919.64 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:27:23,945 epoch 9 - iter 65/138 - loss 0.02382819 - time (sec): 3.73 - samples/sec: 2912.31 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:27:24,724 epoch 9 - iter 78/138 - loss 0.02378557 - time (sec): 4.51 - samples/sec: 2905.29 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:27:25,481 epoch 9 - iter 91/138 - loss 0.02458101 - time (sec): 5.27 - samples/sec: 2872.17 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:27:26,237 epoch 9 - iter 104/138 - loss 0.02381904 - time (sec): 6.02 - samples/sec: 2883.72 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:27:26,959 epoch 9 - iter 117/138 - loss 0.02435136 - time (sec): 6.74 - samples/sec: 2889.26 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:27:27,656 epoch 9 - iter 130/138 - loss 0.02457447 - time (sec): 7.44 - samples/sec: 2874.68 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:27:28,130 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:28,130 EPOCH 9 done: loss 0.0244 - lr: 0.000004
2023-10-13 08:27:28,844 DEV : loss 0.16501910984516144 - f1-score (micro avg)  0.8741
2023-10-13 08:27:28,850 saving best model
2023-10-13 08:27:29,280 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:30,048 epoch 10 - iter 13/138 - loss 0.02703412 - time (sec): 0.77 - samples/sec: 3082.15 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:27:30,794 epoch 10 - iter 26/138 - loss 0.01688742 - time (sec): 1.51 - samples/sec: 2890.78 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:27:31,538 epoch 10 - iter 39/138 - loss 0.01465273 - time (sec): 2.26 - samples/sec: 2855.54 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:27:32,259 epoch 10 - iter 52/138 - loss 0.01768204 - time (sec): 2.98 - samples/sec: 2879.42 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:27:32,978 epoch 10 - iter 65/138 - loss 0.01594072 - time (sec): 3.70 - samples/sec: 2851.87 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:27:33,760 epoch 10 - iter 78/138 - loss 0.01490758 - time (sec): 4.48 - samples/sec: 2852.30 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:27:34,525 epoch 10 - iter 91/138 - loss 0.01513863 - time (sec): 5.24 - samples/sec: 2876.63 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:27:35,251 epoch 10 - iter 104/138 - loss 0.01506427 - time (sec): 5.97 - samples/sec: 2910.48 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:27:35,944 epoch 10 - iter 117/138 - loss 0.01598269 - time (sec): 6.66 - samples/sec: 2900.63 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:27:36,673 epoch 10 - iter 130/138 - loss 0.01793335 - time (sec): 7.39 - samples/sec: 2895.22 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:27:37,116 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:37,116 EPOCH 10 done: loss 0.0179 - lr: 0.000000
2023-10-13 08:27:37,847 DEV : loss 0.16583986580371857 - f1-score (micro avg)  0.8694
2023-10-13 08:27:38,184 ----------------------------------------------------------------------------------------------------
2023-10-13 08:27:38,185 Loading model from best epoch ...
2023-10-13 08:27:39,730 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:27:40,442 
Results:
- F-score (micro) 0.89
- F-score (macro) 0.6905
- Accuracy 0.819

By class:
              precision    recall  f1-score   support

       scope     0.8649    0.9091    0.8864       176
        pers     0.9380    0.9453    0.9416       128
        work     0.8243    0.8243    0.8243        74
         loc     0.6667    1.0000    0.8000         2
      object     0.0000    0.0000    0.0000         2

   micro avg     0.8798    0.9005    0.8900       382
   macro avg     0.6588    0.7357    0.6905       382
weighted avg     0.8759    0.9005    0.8878       382

2023-10-13 08:27:40,442 ----------------------------------------------------------------------------------------------------