File size: 24,001 Bytes
e087466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-13 10:59:08,250 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,251 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 10:59:08,251 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,251 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-13 10:59:08,251 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,251 Train:  966 sentences
2023-10-13 10:59:08,251         (train_with_dev=False, train_with_test=False)
2023-10-13 10:59:08,251 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,251 Training Params:
2023-10-13 10:59:08,251  - learning_rate: "5e-05" 
2023-10-13 10:59:08,251  - mini_batch_size: "4"
2023-10-13 10:59:08,251  - max_epochs: "10"
2023-10-13 10:59:08,251  - shuffle: "True"
2023-10-13 10:59:08,251 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,251 Plugins:
2023-10-13 10:59:08,252  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 10:59:08,252 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,252 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 10:59:08,252  - metric: "('micro avg', 'f1-score')"
2023-10-13 10:59:08,252 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,252 Computation:
2023-10-13 10:59:08,252  - compute on device: cuda:0
2023-10-13 10:59:08,252  - embedding storage: none
2023-10-13 10:59:08,252 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,252 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-13 10:59:08,252 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:08,252 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:09,306 epoch 1 - iter 24/242 - loss 3.28733292 - time (sec): 1.05 - samples/sec: 2366.78 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:59:10,392 epoch 1 - iter 48/242 - loss 2.63402043 - time (sec): 2.14 - samples/sec: 2326.05 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:59:11,459 epoch 1 - iter 72/242 - loss 2.00586654 - time (sec): 3.21 - samples/sec: 2324.24 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:59:12,508 epoch 1 - iter 96/242 - loss 1.68954188 - time (sec): 4.26 - samples/sec: 2294.28 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:59:13,588 epoch 1 - iter 120/242 - loss 1.45281702 - time (sec): 5.33 - samples/sec: 2263.62 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:59:14,716 epoch 1 - iter 144/242 - loss 1.26827468 - time (sec): 6.46 - samples/sec: 2252.45 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:59:15,809 epoch 1 - iter 168/242 - loss 1.11884816 - time (sec): 7.56 - samples/sec: 2283.96 - lr: 0.000035 - momentum: 0.000000
2023-10-13 10:59:16,875 epoch 1 - iter 192/242 - loss 1.01409299 - time (sec): 8.62 - samples/sec: 2294.74 - lr: 0.000039 - momentum: 0.000000
2023-10-13 10:59:17,918 epoch 1 - iter 216/242 - loss 0.94260177 - time (sec): 9.67 - samples/sec: 2287.57 - lr: 0.000044 - momentum: 0.000000
2023-10-13 10:59:19,051 epoch 1 - iter 240/242 - loss 0.87025608 - time (sec): 10.80 - samples/sec: 2278.82 - lr: 0.000049 - momentum: 0.000000
2023-10-13 10:59:19,134 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:19,135 EPOCH 1 done: loss 0.8660 - lr: 0.000049
2023-10-13 10:59:19,874 DEV : loss 0.21214990317821503 - f1-score (micro avg)  0.5594
2023-10-13 10:59:19,879 saving best model
2023-10-13 10:59:20,221 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:21,273 epoch 2 - iter 24/242 - loss 0.22624820 - time (sec): 1.05 - samples/sec: 2433.95 - lr: 0.000049 - momentum: 0.000000
2023-10-13 10:59:22,350 epoch 2 - iter 48/242 - loss 0.21233454 - time (sec): 2.13 - samples/sec: 2375.85 - lr: 0.000049 - momentum: 0.000000
2023-10-13 10:59:23,396 epoch 2 - iter 72/242 - loss 0.18839820 - time (sec): 3.17 - samples/sec: 2339.79 - lr: 0.000048 - momentum: 0.000000
2023-10-13 10:59:24,448 epoch 2 - iter 96/242 - loss 0.17271089 - time (sec): 4.22 - samples/sec: 2330.52 - lr: 0.000048 - momentum: 0.000000
2023-10-13 10:59:25,552 epoch 2 - iter 120/242 - loss 0.18913709 - time (sec): 5.33 - samples/sec: 2356.25 - lr: 0.000047 - momentum: 0.000000
2023-10-13 10:59:26,636 epoch 2 - iter 144/242 - loss 0.17833993 - time (sec): 6.41 - samples/sec: 2388.36 - lr: 0.000047 - momentum: 0.000000
2023-10-13 10:59:27,689 epoch 2 - iter 168/242 - loss 0.17433724 - time (sec): 7.47 - samples/sec: 2363.68 - lr: 0.000046 - momentum: 0.000000
2023-10-13 10:59:28,762 epoch 2 - iter 192/242 - loss 0.17874942 - time (sec): 8.54 - samples/sec: 2321.69 - lr: 0.000046 - momentum: 0.000000
2023-10-13 10:59:29,824 epoch 2 - iter 216/242 - loss 0.18049272 - time (sec): 9.60 - samples/sec: 2297.49 - lr: 0.000045 - momentum: 0.000000
2023-10-13 10:59:30,905 epoch 2 - iter 240/242 - loss 0.17478721 - time (sec): 10.68 - samples/sec: 2301.40 - lr: 0.000045 - momentum: 0.000000
2023-10-13 10:59:30,990 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:30,991 EPOCH 2 done: loss 0.1742 - lr: 0.000045
2023-10-13 10:59:31,852 DEV : loss 0.12608306109905243 - f1-score (micro avg)  0.8045
2023-10-13 10:59:31,861 saving best model
2023-10-13 10:59:32,380 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:33,707 epoch 3 - iter 24/242 - loss 0.09298301 - time (sec): 1.32 - samples/sec: 1779.37 - lr: 0.000044 - momentum: 0.000000
2023-10-13 10:59:34,962 epoch 3 - iter 48/242 - loss 0.10636551 - time (sec): 2.58 - samples/sec: 1926.00 - lr: 0.000043 - momentum: 0.000000
2023-10-13 10:59:36,208 epoch 3 - iter 72/242 - loss 0.10343864 - time (sec): 3.83 - samples/sec: 1932.86 - lr: 0.000043 - momentum: 0.000000
2023-10-13 10:59:37,481 epoch 3 - iter 96/242 - loss 0.10112269 - time (sec): 5.10 - samples/sec: 1923.61 - lr: 0.000042 - momentum: 0.000000
2023-10-13 10:59:38,690 epoch 3 - iter 120/242 - loss 0.10150347 - time (sec): 6.31 - samples/sec: 1929.61 - lr: 0.000042 - momentum: 0.000000
2023-10-13 10:59:40,038 epoch 3 - iter 144/242 - loss 0.10549571 - time (sec): 7.66 - samples/sec: 1952.93 - lr: 0.000041 - momentum: 0.000000
2023-10-13 10:59:41,356 epoch 3 - iter 168/242 - loss 0.10215889 - time (sec): 8.97 - samples/sec: 1917.90 - lr: 0.000041 - momentum: 0.000000
2023-10-13 10:59:42,677 epoch 3 - iter 192/242 - loss 0.10211715 - time (sec): 10.29 - samples/sec: 1910.10 - lr: 0.000040 - momentum: 0.000000
2023-10-13 10:59:44,060 epoch 3 - iter 216/242 - loss 0.09881486 - time (sec): 11.68 - samples/sec: 1888.38 - lr: 0.000040 - momentum: 0.000000
2023-10-13 10:59:45,285 epoch 3 - iter 240/242 - loss 0.09977052 - time (sec): 12.90 - samples/sec: 1910.68 - lr: 0.000039 - momentum: 0.000000
2023-10-13 10:59:45,381 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:45,381 EPOCH 3 done: loss 0.0996 - lr: 0.000039
2023-10-13 10:59:46,225 DEV : loss 0.1327812224626541 - f1-score (micro avg)  0.8134
2023-10-13 10:59:46,230 saving best model
2023-10-13 10:59:46,704 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:47,820 epoch 4 - iter 24/242 - loss 0.04194900 - time (sec): 1.11 - samples/sec: 2245.65 - lr: 0.000038 - momentum: 0.000000
2023-10-13 10:59:48,933 epoch 4 - iter 48/242 - loss 0.06746592 - time (sec): 2.23 - samples/sec: 2269.70 - lr: 0.000038 - momentum: 0.000000
2023-10-13 10:59:50,079 epoch 4 - iter 72/242 - loss 0.07175249 - time (sec): 3.37 - samples/sec: 2327.56 - lr: 0.000037 - momentum: 0.000000
2023-10-13 10:59:51,181 epoch 4 - iter 96/242 - loss 0.07971414 - time (sec): 4.48 - samples/sec: 2280.25 - lr: 0.000037 - momentum: 0.000000
2023-10-13 10:59:52,322 epoch 4 - iter 120/242 - loss 0.07312796 - time (sec): 5.62 - samples/sec: 2279.12 - lr: 0.000036 - momentum: 0.000000
2023-10-13 10:59:53,455 epoch 4 - iter 144/242 - loss 0.07512113 - time (sec): 6.75 - samples/sec: 2270.23 - lr: 0.000036 - momentum: 0.000000
2023-10-13 10:59:54,569 epoch 4 - iter 168/242 - loss 0.07531151 - time (sec): 7.86 - samples/sec: 2286.32 - lr: 0.000035 - momentum: 0.000000
2023-10-13 10:59:55,639 epoch 4 - iter 192/242 - loss 0.07672808 - time (sec): 8.93 - samples/sec: 2230.72 - lr: 0.000035 - momentum: 0.000000
2023-10-13 10:59:56,705 epoch 4 - iter 216/242 - loss 0.07417428 - time (sec): 10.00 - samples/sec: 2234.15 - lr: 0.000034 - momentum: 0.000000
2023-10-13 10:59:57,756 epoch 4 - iter 240/242 - loss 0.07268832 - time (sec): 11.05 - samples/sec: 2231.23 - lr: 0.000033 - momentum: 0.000000
2023-10-13 10:59:57,843 ----------------------------------------------------------------------------------------------------
2023-10-13 10:59:57,843 EPOCH 4 done: loss 0.0724 - lr: 0.000033
2023-10-13 10:59:58,635 DEV : loss 0.1568627655506134 - f1-score (micro avg)  0.8312
2023-10-13 10:59:58,640 saving best model
2023-10-13 10:59:59,110 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:00,176 epoch 5 - iter 24/242 - loss 0.03483374 - time (sec): 1.06 - samples/sec: 1997.81 - lr: 0.000033 - momentum: 0.000000
2023-10-13 11:00:01,249 epoch 5 - iter 48/242 - loss 0.04413526 - time (sec): 2.13 - samples/sec: 2249.23 - lr: 0.000032 - momentum: 0.000000
2023-10-13 11:00:02,337 epoch 5 - iter 72/242 - loss 0.04976873 - time (sec): 3.22 - samples/sec: 2226.61 - lr: 0.000032 - momentum: 0.000000
2023-10-13 11:00:03,426 epoch 5 - iter 96/242 - loss 0.04982655 - time (sec): 4.31 - samples/sec: 2197.10 - lr: 0.000031 - momentum: 0.000000
2023-10-13 11:00:04,523 epoch 5 - iter 120/242 - loss 0.05222925 - time (sec): 5.40 - samples/sec: 2230.99 - lr: 0.000031 - momentum: 0.000000
2023-10-13 11:00:05,620 epoch 5 - iter 144/242 - loss 0.05547688 - time (sec): 6.50 - samples/sec: 2240.20 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:00:06,710 epoch 5 - iter 168/242 - loss 0.05574000 - time (sec): 7.59 - samples/sec: 2275.39 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:00:07,768 epoch 5 - iter 192/242 - loss 0.05515866 - time (sec): 8.65 - samples/sec: 2267.04 - lr: 0.000029 - momentum: 0.000000
2023-10-13 11:00:08,874 epoch 5 - iter 216/242 - loss 0.05441600 - time (sec): 9.75 - samples/sec: 2271.25 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:00:09,967 epoch 5 - iter 240/242 - loss 0.05441985 - time (sec): 10.85 - samples/sec: 2271.98 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:00:10,060 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:10,060 EPOCH 5 done: loss 0.0542 - lr: 0.000028
2023-10-13 11:00:10,812 DEV : loss 0.1912143975496292 - f1-score (micro avg)  0.8287
2023-10-13 11:00:10,817 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:11,938 epoch 6 - iter 24/242 - loss 0.05283667 - time (sec): 1.12 - samples/sec: 2277.81 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:00:13,012 epoch 6 - iter 48/242 - loss 0.03613276 - time (sec): 2.19 - samples/sec: 2198.78 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:00:14,098 epoch 6 - iter 72/242 - loss 0.03729743 - time (sec): 3.28 - samples/sec: 2240.13 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:00:15,232 epoch 6 - iter 96/242 - loss 0.03520942 - time (sec): 4.41 - samples/sec: 2228.42 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:00:16,386 epoch 6 - iter 120/242 - loss 0.03242642 - time (sec): 5.57 - samples/sec: 2253.95 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:00:17,478 epoch 6 - iter 144/242 - loss 0.03908906 - time (sec): 6.66 - samples/sec: 2229.69 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:00:18,575 epoch 6 - iter 168/242 - loss 0.03867449 - time (sec): 7.76 - samples/sec: 2214.95 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:00:19,656 epoch 6 - iter 192/242 - loss 0.03996907 - time (sec): 8.84 - samples/sec: 2236.10 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:00:20,703 epoch 6 - iter 216/242 - loss 0.04038098 - time (sec): 9.88 - samples/sec: 2239.86 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:00:21,779 epoch 6 - iter 240/242 - loss 0.03904930 - time (sec): 10.96 - samples/sec: 2231.07 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:00:21,872 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:21,872 EPOCH 6 done: loss 0.0386 - lr: 0.000022
2023-10-13 11:00:22,704 DEV : loss 0.18979744613170624 - f1-score (micro avg)  0.8401
2023-10-13 11:00:22,710 saving best model
2023-10-13 11:00:23,179 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:24,347 epoch 7 - iter 24/242 - loss 0.01995235 - time (sec): 1.16 - samples/sec: 2138.90 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:00:25,425 epoch 7 - iter 48/242 - loss 0.01639084 - time (sec): 2.24 - samples/sec: 2054.26 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:00:26,499 epoch 7 - iter 72/242 - loss 0.01766459 - time (sec): 3.31 - samples/sec: 2147.70 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:00:27,634 epoch 7 - iter 96/242 - loss 0.02077422 - time (sec): 4.45 - samples/sec: 2208.62 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:00:28,711 epoch 7 - iter 120/242 - loss 0.02499053 - time (sec): 5.53 - samples/sec: 2172.53 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:00:29,804 epoch 7 - iter 144/242 - loss 0.02688253 - time (sec): 6.62 - samples/sec: 2185.03 - lr: 0.000019 - momentum: 0.000000
2023-10-13 11:00:30,915 epoch 7 - iter 168/242 - loss 0.02690714 - time (sec): 7.73 - samples/sec: 2193.29 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:00:32,036 epoch 7 - iter 192/242 - loss 0.02722919 - time (sec): 8.85 - samples/sec: 2215.68 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:00:33,112 epoch 7 - iter 216/242 - loss 0.02576495 - time (sec): 9.93 - samples/sec: 2231.01 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:00:34,219 epoch 7 - iter 240/242 - loss 0.02602469 - time (sec): 11.03 - samples/sec: 2228.97 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:00:34,306 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:34,306 EPOCH 7 done: loss 0.0259 - lr: 0.000017
2023-10-13 11:00:35,271 DEV : loss 0.1991121768951416 - f1-score (micro avg)  0.8315
2023-10-13 11:00:35,277 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:36,352 epoch 8 - iter 24/242 - loss 0.01398267 - time (sec): 1.07 - samples/sec: 2428.11 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:00:37,410 epoch 8 - iter 48/242 - loss 0.02187050 - time (sec): 2.13 - samples/sec: 2261.18 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:00:38,497 epoch 8 - iter 72/242 - loss 0.02478786 - time (sec): 3.22 - samples/sec: 2316.34 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:00:39,565 epoch 8 - iter 96/242 - loss 0.02290241 - time (sec): 4.29 - samples/sec: 2350.71 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:00:40,644 epoch 8 - iter 120/242 - loss 0.01921730 - time (sec): 5.37 - samples/sec: 2302.90 - lr: 0.000014 - momentum: 0.000000
2023-10-13 11:00:41,758 epoch 8 - iter 144/242 - loss 0.01872496 - time (sec): 6.48 - samples/sec: 2327.98 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:00:42,819 epoch 8 - iter 168/242 - loss 0.01731024 - time (sec): 7.54 - samples/sec: 2299.72 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:00:43,890 epoch 8 - iter 192/242 - loss 0.01778436 - time (sec): 8.61 - samples/sec: 2301.69 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:00:44,962 epoch 8 - iter 216/242 - loss 0.01877575 - time (sec): 9.68 - samples/sec: 2299.60 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:00:46,026 epoch 8 - iter 240/242 - loss 0.01890326 - time (sec): 10.75 - samples/sec: 2292.00 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:00:46,109 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:46,109 EPOCH 8 done: loss 0.0188 - lr: 0.000011
2023-10-13 11:00:46,955 DEV : loss 0.18604768812656403 - f1-score (micro avg)  0.8455
2023-10-13 11:00:46,960 saving best model
2023-10-13 11:00:47,419 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:48,560 epoch 9 - iter 24/242 - loss 0.02467621 - time (sec): 1.14 - samples/sec: 1974.79 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:00:49,631 epoch 9 - iter 48/242 - loss 0.01478693 - time (sec): 2.21 - samples/sec: 2156.92 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:00:50,751 epoch 9 - iter 72/242 - loss 0.01735104 - time (sec): 3.33 - samples/sec: 2179.58 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:00:51,852 epoch 9 - iter 96/242 - loss 0.01333860 - time (sec): 4.43 - samples/sec: 2240.98 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:00:52,943 epoch 9 - iter 120/242 - loss 0.01223139 - time (sec): 5.52 - samples/sec: 2226.98 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:00:54,061 epoch 9 - iter 144/242 - loss 0.01157016 - time (sec): 6.64 - samples/sec: 2213.05 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:00:55,220 epoch 9 - iter 168/242 - loss 0.01108253 - time (sec): 7.80 - samples/sec: 2215.59 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:00:56,375 epoch 9 - iter 192/242 - loss 0.01061662 - time (sec): 8.95 - samples/sec: 2224.12 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:00:57,494 epoch 9 - iter 216/242 - loss 0.01072204 - time (sec): 10.07 - samples/sec: 2199.31 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:00:58,615 epoch 9 - iter 240/242 - loss 0.01115647 - time (sec): 11.19 - samples/sec: 2194.00 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:00:58,699 ----------------------------------------------------------------------------------------------------
2023-10-13 11:00:58,700 EPOCH 9 done: loss 0.0111 - lr: 0.000006
2023-10-13 11:00:59,516 DEV : loss 0.1872359663248062 - f1-score (micro avg)  0.8451
2023-10-13 11:00:59,522 ----------------------------------------------------------------------------------------------------
2023-10-13 11:01:00,652 epoch 10 - iter 24/242 - loss 0.00276810 - time (sec): 1.13 - samples/sec: 2006.47 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:01:01,740 epoch 10 - iter 48/242 - loss 0.00426126 - time (sec): 2.22 - samples/sec: 2154.76 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:01:02,891 epoch 10 - iter 72/242 - loss 0.00479354 - time (sec): 3.37 - samples/sec: 2183.96 - lr: 0.000004 - momentum: 0.000000
2023-10-13 11:01:04,056 epoch 10 - iter 96/242 - loss 0.01271530 - time (sec): 4.53 - samples/sec: 2172.12 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:01:05,129 epoch 10 - iter 120/242 - loss 0.01214986 - time (sec): 5.61 - samples/sec: 2153.56 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:01:06,195 epoch 10 - iter 144/242 - loss 0.01140887 - time (sec): 6.67 - samples/sec: 2108.49 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:01:07,303 epoch 10 - iter 168/242 - loss 0.00972095 - time (sec): 7.78 - samples/sec: 2146.63 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:01:08,402 epoch 10 - iter 192/242 - loss 0.00946718 - time (sec): 8.88 - samples/sec: 2155.32 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:01:09,485 epoch 10 - iter 216/242 - loss 0.00880560 - time (sec): 9.96 - samples/sec: 2184.60 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:01:10,583 epoch 10 - iter 240/242 - loss 0.00862072 - time (sec): 11.06 - samples/sec: 2219.90 - lr: 0.000000 - momentum: 0.000000
2023-10-13 11:01:10,668 ----------------------------------------------------------------------------------------------------
2023-10-13 11:01:10,668 EPOCH 10 done: loss 0.0086 - lr: 0.000000
2023-10-13 11:01:11,517 DEV : loss 0.19478590786457062 - f1-score (micro avg)  0.835
2023-10-13 11:01:11,880 ----------------------------------------------------------------------------------------------------
2023-10-13 11:01:11,881 Loading model from best epoch ...
2023-10-13 11:01:13,251 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 11:01:14,070 
Results:
- F-score (micro) 0.8232
- F-score (macro) 0.4943
- Accuracy 0.7193

By class:
              precision    recall  f1-score   support

        pers     0.8611    0.8921    0.8763       139
       scope     0.8321    0.8837    0.8571       129
        work     0.6848    0.7875    0.7326        80
         loc     0.5714    0.4444    0.5000         9
        date     0.0000    0.0000    0.0000         3
      object     0.0000    0.0000    0.0000         0

   micro avg     0.8005    0.8472    0.8232       360
   macro avg     0.4916    0.5013    0.4943       360
weighted avg     0.7971    0.8472    0.8208       360

2023-10-13 11:01:14,070 ----------------------------------------------------------------------------------------------------