File size: 23,903 Bytes
0766310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
2023-10-13 10:37:09,830 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,831 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 10:37:09,831 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,831 MultiCorpus: 966 train + 219 dev + 204 test sentences
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-13 10:37:09,831 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,831 Train: 966 sentences
2023-10-13 10:37:09,831 (train_with_dev=False, train_with_test=False)
2023-10-13 10:37:09,832 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,832 Training Params:
2023-10-13 10:37:09,832 - learning_rate: "5e-05"
2023-10-13 10:37:09,832 - mini_batch_size: "8"
2023-10-13 10:37:09,832 - max_epochs: "10"
2023-10-13 10:37:09,832 - shuffle: "True"
2023-10-13 10:37:09,832 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,832 Plugins:
2023-10-13 10:37:09,832 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 10:37:09,832 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,832 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 10:37:09,832 - metric: "('micro avg', 'f1-score')"
2023-10-13 10:37:09,832 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,832 Computation:
2023-10-13 10:37:09,832 - compute on device: cuda:0
2023-10-13 10:37:09,832 - embedding storage: none
2023-10-13 10:37:09,832 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,832 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-13 10:37:09,832 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:09,832 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:10,544 epoch 1 - iter 12/121 - loss 3.37368518 - time (sec): 0.71 - samples/sec: 3283.62 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:37:11,390 epoch 1 - iter 24/121 - loss 3.10830298 - time (sec): 1.56 - samples/sec: 3220.70 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:37:12,150 epoch 1 - iter 36/121 - loss 2.59152083 - time (sec): 2.32 - samples/sec: 3304.19 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:37:12,878 epoch 1 - iter 48/121 - loss 2.14443777 - time (sec): 3.05 - samples/sec: 3304.14 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:37:13,546 epoch 1 - iter 60/121 - loss 1.89276798 - time (sec): 3.71 - samples/sec: 3291.30 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:37:14,312 epoch 1 - iter 72/121 - loss 1.66470130 - time (sec): 4.48 - samples/sec: 3319.18 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:37:15,049 epoch 1 - iter 84/121 - loss 1.50708292 - time (sec): 5.22 - samples/sec: 3315.88 - lr: 0.000034 - momentum: 0.000000
2023-10-13 10:37:15,866 epoch 1 - iter 96/121 - loss 1.37611929 - time (sec): 6.03 - samples/sec: 3297.89 - lr: 0.000039 - momentum: 0.000000
2023-10-13 10:37:16,566 epoch 1 - iter 108/121 - loss 1.26833368 - time (sec): 6.73 - samples/sec: 3295.61 - lr: 0.000044 - momentum: 0.000000
2023-10-13 10:37:17,359 epoch 1 - iter 120/121 - loss 1.17773191 - time (sec): 7.53 - samples/sec: 3262.56 - lr: 0.000049 - momentum: 0.000000
2023-10-13 10:37:17,413 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:17,413 EPOCH 1 done: loss 1.1712 - lr: 0.000049
2023-10-13 10:37:18,112 DEV : loss 0.3314380943775177 - f1-score (micro avg) 0.4677
2023-10-13 10:37:18,119 saving best model
2023-10-13 10:37:18,511 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:19,248 epoch 2 - iter 12/121 - loss 0.31576988 - time (sec): 0.73 - samples/sec: 3322.67 - lr: 0.000049 - momentum: 0.000000
2023-10-13 10:37:19,977 epoch 2 - iter 24/121 - loss 0.34306470 - time (sec): 1.46 - samples/sec: 3259.10 - lr: 0.000049 - momentum: 0.000000
2023-10-13 10:37:21,092 epoch 2 - iter 36/121 - loss 0.31292154 - time (sec): 2.58 - samples/sec: 2863.64 - lr: 0.000048 - momentum: 0.000000
2023-10-13 10:37:21,910 epoch 2 - iter 48/121 - loss 0.29648981 - time (sec): 3.40 - samples/sec: 2926.92 - lr: 0.000048 - momentum: 0.000000
2023-10-13 10:37:22,674 epoch 2 - iter 60/121 - loss 0.29468175 - time (sec): 4.16 - samples/sec: 2964.10 - lr: 0.000047 - momentum: 0.000000
2023-10-13 10:37:23,403 epoch 2 - iter 72/121 - loss 0.28361730 - time (sec): 4.89 - samples/sec: 2972.86 - lr: 0.000047 - momentum: 0.000000
2023-10-13 10:37:24,164 epoch 2 - iter 84/121 - loss 0.26817243 - time (sec): 5.65 - samples/sec: 3017.49 - lr: 0.000046 - momentum: 0.000000
2023-10-13 10:37:24,958 epoch 2 - iter 96/121 - loss 0.26411978 - time (sec): 6.45 - samples/sec: 3044.43 - lr: 0.000046 - momentum: 0.000000
2023-10-13 10:37:25,831 epoch 2 - iter 108/121 - loss 0.25546258 - time (sec): 7.32 - samples/sec: 3074.49 - lr: 0.000045 - momentum: 0.000000
2023-10-13 10:37:26,576 epoch 2 - iter 120/121 - loss 0.25199092 - time (sec): 8.06 - samples/sec: 3054.74 - lr: 0.000045 - momentum: 0.000000
2023-10-13 10:37:26,632 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:26,633 EPOCH 2 done: loss 0.2515 - lr: 0.000045
2023-10-13 10:37:27,440 DEV : loss 0.17766954004764557 - f1-score (micro avg) 0.6024
2023-10-13 10:37:27,446 saving best model
2023-10-13 10:37:27,979 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:28,755 epoch 3 - iter 12/121 - loss 0.22685084 - time (sec): 0.77 - samples/sec: 3188.83 - lr: 0.000044 - momentum: 0.000000
2023-10-13 10:37:29,562 epoch 3 - iter 24/121 - loss 0.18735251 - time (sec): 1.57 - samples/sec: 3168.75 - lr: 0.000043 - momentum: 0.000000
2023-10-13 10:37:30,421 epoch 3 - iter 36/121 - loss 0.16249113 - time (sec): 2.43 - samples/sec: 3039.43 - lr: 0.000043 - momentum: 0.000000
2023-10-13 10:37:31,178 epoch 3 - iter 48/121 - loss 0.15237792 - time (sec): 3.19 - samples/sec: 3045.43 - lr: 0.000042 - momentum: 0.000000
2023-10-13 10:37:31,938 epoch 3 - iter 60/121 - loss 0.14494580 - time (sec): 3.95 - samples/sec: 3086.89 - lr: 0.000042 - momentum: 0.000000
2023-10-13 10:37:32,747 epoch 3 - iter 72/121 - loss 0.13571616 - time (sec): 4.76 - samples/sec: 3083.83 - lr: 0.000041 - momentum: 0.000000
2023-10-13 10:37:33,491 epoch 3 - iter 84/121 - loss 0.14151344 - time (sec): 5.50 - samples/sec: 3107.08 - lr: 0.000041 - momentum: 0.000000
2023-10-13 10:37:34,282 epoch 3 - iter 96/121 - loss 0.13409286 - time (sec): 6.30 - samples/sec: 3127.02 - lr: 0.000040 - momentum: 0.000000
2023-10-13 10:37:35,097 epoch 3 - iter 108/121 - loss 0.13146597 - time (sec): 7.11 - samples/sec: 3118.39 - lr: 0.000040 - momentum: 0.000000
2023-10-13 10:37:35,888 epoch 3 - iter 120/121 - loss 0.13131231 - time (sec): 7.90 - samples/sec: 3112.81 - lr: 0.000039 - momentum: 0.000000
2023-10-13 10:37:35,943 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:35,944 EPOCH 3 done: loss 0.1318 - lr: 0.000039
2023-10-13 10:37:36,724 DEV : loss 0.1347845047712326 - f1-score (micro avg) 0.8042
2023-10-13 10:37:36,730 saving best model
2023-10-13 10:37:37,231 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:38,005 epoch 4 - iter 12/121 - loss 0.11228080 - time (sec): 0.77 - samples/sec: 3270.53 - lr: 0.000038 - momentum: 0.000000
2023-10-13 10:37:38,813 epoch 4 - iter 24/121 - loss 0.09026772 - time (sec): 1.58 - samples/sec: 3266.98 - lr: 0.000038 - momentum: 0.000000
2023-10-13 10:37:39,584 epoch 4 - iter 36/121 - loss 0.08089175 - time (sec): 2.35 - samples/sec: 3259.77 - lr: 0.000037 - momentum: 0.000000
2023-10-13 10:37:40,349 epoch 4 - iter 48/121 - loss 0.08447303 - time (sec): 3.12 - samples/sec: 3133.46 - lr: 0.000037 - momentum: 0.000000
2023-10-13 10:37:41,189 epoch 4 - iter 60/121 - loss 0.07925997 - time (sec): 3.96 - samples/sec: 3168.10 - lr: 0.000036 - momentum: 0.000000
2023-10-13 10:37:41,940 epoch 4 - iter 72/121 - loss 0.07889240 - time (sec): 4.71 - samples/sec: 3170.78 - lr: 0.000036 - momentum: 0.000000
2023-10-13 10:37:42,749 epoch 4 - iter 84/121 - loss 0.07996881 - time (sec): 5.52 - samples/sec: 3149.67 - lr: 0.000035 - momentum: 0.000000
2023-10-13 10:37:43,596 epoch 4 - iter 96/121 - loss 0.08050200 - time (sec): 6.36 - samples/sec: 3101.42 - lr: 0.000035 - momentum: 0.000000
2023-10-13 10:37:44,352 epoch 4 - iter 108/121 - loss 0.07822267 - time (sec): 7.12 - samples/sec: 3090.86 - lr: 0.000034 - momentum: 0.000000
2023-10-13 10:37:45,161 epoch 4 - iter 120/121 - loss 0.07942352 - time (sec): 7.93 - samples/sec: 3096.60 - lr: 0.000034 - momentum: 0.000000
2023-10-13 10:37:45,220 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:45,221 EPOCH 4 done: loss 0.0791 - lr: 0.000034
2023-10-13 10:37:45,993 DEV : loss 0.13045471906661987 - f1-score (micro avg) 0.828
2023-10-13 10:37:46,000 saving best model
2023-10-13 10:37:46,454 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:47,233 epoch 5 - iter 12/121 - loss 0.05702991 - time (sec): 0.78 - samples/sec: 3259.80 - lr: 0.000033 - momentum: 0.000000
2023-10-13 10:37:48,016 epoch 5 - iter 24/121 - loss 0.06750735 - time (sec): 1.56 - samples/sec: 3087.77 - lr: 0.000032 - momentum: 0.000000
2023-10-13 10:37:48,793 epoch 5 - iter 36/121 - loss 0.06733838 - time (sec): 2.34 - samples/sec: 3125.37 - lr: 0.000032 - momentum: 0.000000
2023-10-13 10:37:49,531 epoch 5 - iter 48/121 - loss 0.06395984 - time (sec): 3.07 - samples/sec: 3133.17 - lr: 0.000031 - momentum: 0.000000
2023-10-13 10:37:50,396 epoch 5 - iter 60/121 - loss 0.06148417 - time (sec): 3.94 - samples/sec: 3135.92 - lr: 0.000031 - momentum: 0.000000
2023-10-13 10:37:51,191 epoch 5 - iter 72/121 - loss 0.06256314 - time (sec): 4.73 - samples/sec: 3188.41 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:37:51,931 epoch 5 - iter 84/121 - loss 0.06116325 - time (sec): 5.47 - samples/sec: 3225.78 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:37:52,723 epoch 5 - iter 96/121 - loss 0.06002168 - time (sec): 6.26 - samples/sec: 3188.00 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:37:53,427 epoch 5 - iter 108/121 - loss 0.05950433 - time (sec): 6.97 - samples/sec: 3157.89 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:37:54,183 epoch 5 - iter 120/121 - loss 0.06115160 - time (sec): 7.73 - samples/sec: 3172.16 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:37:54,253 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:54,254 EPOCH 5 done: loss 0.0617 - lr: 0.000028
2023-10-13 10:37:55,052 DEV : loss 0.15638893842697144 - f1-score (micro avg) 0.7915
2023-10-13 10:37:55,058 ----------------------------------------------------------------------------------------------------
2023-10-13 10:37:55,839 epoch 6 - iter 12/121 - loss 0.03278663 - time (sec): 0.78 - samples/sec: 3268.01 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:37:56,584 epoch 6 - iter 24/121 - loss 0.04414064 - time (sec): 1.52 - samples/sec: 3061.85 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:37:57,362 epoch 6 - iter 36/121 - loss 0.04465714 - time (sec): 2.30 - samples/sec: 3052.83 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:37:58,115 epoch 6 - iter 48/121 - loss 0.04285887 - time (sec): 3.06 - samples/sec: 3059.45 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:37:58,922 epoch 6 - iter 60/121 - loss 0.04498895 - time (sec): 3.86 - samples/sec: 3119.11 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:37:59,658 epoch 6 - iter 72/121 - loss 0.04532703 - time (sec): 4.60 - samples/sec: 3159.96 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:38:00,462 epoch 6 - iter 84/121 - loss 0.04301846 - time (sec): 5.40 - samples/sec: 3185.44 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:38:01,218 epoch 6 - iter 96/121 - loss 0.04154085 - time (sec): 6.16 - samples/sec: 3238.35 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:38:02,003 epoch 6 - iter 108/121 - loss 0.04183211 - time (sec): 6.94 - samples/sec: 3235.49 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:38:02,702 epoch 6 - iter 120/121 - loss 0.04186647 - time (sec): 7.64 - samples/sec: 3221.47 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:38:02,761 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:02,761 EPOCH 6 done: loss 0.0418 - lr: 0.000022
2023-10-13 10:38:03,570 DEV : loss 0.14503213763237 - f1-score (micro avg) 0.824
2023-10-13 10:38:03,575 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:04,319 epoch 7 - iter 12/121 - loss 0.03044972 - time (sec): 0.74 - samples/sec: 2975.10 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:38:05,121 epoch 7 - iter 24/121 - loss 0.02231224 - time (sec): 1.54 - samples/sec: 2988.63 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:38:05,938 epoch 7 - iter 36/121 - loss 0.02247562 - time (sec): 2.36 - samples/sec: 3042.46 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:38:06,671 epoch 7 - iter 48/121 - loss 0.02698753 - time (sec): 3.10 - samples/sec: 3099.46 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:38:07,407 epoch 7 - iter 60/121 - loss 0.02945475 - time (sec): 3.83 - samples/sec: 3146.80 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:38:08,216 epoch 7 - iter 72/121 - loss 0.02952242 - time (sec): 4.64 - samples/sec: 3161.81 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:38:09,025 epoch 7 - iter 84/121 - loss 0.03063607 - time (sec): 5.45 - samples/sec: 3179.50 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:38:09,818 epoch 7 - iter 96/121 - loss 0.02801346 - time (sec): 6.24 - samples/sec: 3173.03 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:38:10,551 epoch 7 - iter 108/121 - loss 0.02699956 - time (sec): 6.98 - samples/sec: 3159.19 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:38:11,404 epoch 7 - iter 120/121 - loss 0.02753590 - time (sec): 7.83 - samples/sec: 3152.14 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:38:11,462 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:11,462 EPOCH 7 done: loss 0.0276 - lr: 0.000017
2023-10-13 10:38:12,274 DEV : loss 0.15853901207447052 - f1-score (micro avg) 0.8333
2023-10-13 10:38:12,279 saving best model
2023-10-13 10:38:12,794 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:13,585 epoch 8 - iter 12/121 - loss 0.01639123 - time (sec): 0.79 - samples/sec: 3098.15 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:38:14,399 epoch 8 - iter 24/121 - loss 0.01632867 - time (sec): 1.60 - samples/sec: 2877.12 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:38:15,152 epoch 8 - iter 36/121 - loss 0.01579476 - time (sec): 2.35 - samples/sec: 3001.16 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:38:15,874 epoch 8 - iter 48/121 - loss 0.01445154 - time (sec): 3.08 - samples/sec: 3023.25 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:38:16,727 epoch 8 - iter 60/121 - loss 0.01509986 - time (sec): 3.93 - samples/sec: 3096.65 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:38:17,460 epoch 8 - iter 72/121 - loss 0.01373362 - time (sec): 4.66 - samples/sec: 3139.63 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:38:18,225 epoch 8 - iter 84/121 - loss 0.01333895 - time (sec): 5.43 - samples/sec: 3122.22 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:38:18,994 epoch 8 - iter 96/121 - loss 0.01410936 - time (sec): 6.20 - samples/sec: 3157.16 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:38:19,748 epoch 8 - iter 108/121 - loss 0.01870261 - time (sec): 6.95 - samples/sec: 3181.03 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:38:20,514 epoch 8 - iter 120/121 - loss 0.01979377 - time (sec): 7.72 - samples/sec: 3189.10 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:38:20,569 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:20,569 EPOCH 8 done: loss 0.0197 - lr: 0.000011
2023-10-13 10:38:21,355 DEV : loss 0.17500457167625427 - f1-score (micro avg) 0.8308
2023-10-13 10:38:21,361 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:22,213 epoch 9 - iter 12/121 - loss 0.00825075 - time (sec): 0.85 - samples/sec: 3192.23 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:38:23,011 epoch 9 - iter 24/121 - loss 0.00809065 - time (sec): 1.65 - samples/sec: 3203.59 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:38:23,801 epoch 9 - iter 36/121 - loss 0.01100156 - time (sec): 2.44 - samples/sec: 3046.89 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:38:24,572 epoch 9 - iter 48/121 - loss 0.01511375 - time (sec): 3.21 - samples/sec: 3106.47 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:38:25,353 epoch 9 - iter 60/121 - loss 0.01313352 - time (sec): 3.99 - samples/sec: 3130.98 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:38:26,134 epoch 9 - iter 72/121 - loss 0.01775137 - time (sec): 4.77 - samples/sec: 3196.91 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:38:26,894 epoch 9 - iter 84/121 - loss 0.01634282 - time (sec): 5.53 - samples/sec: 3189.39 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:38:27,684 epoch 9 - iter 96/121 - loss 0.01607601 - time (sec): 6.32 - samples/sec: 3143.75 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:38:28,529 epoch 9 - iter 108/121 - loss 0.01541910 - time (sec): 7.17 - samples/sec: 3141.32 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:38:29,262 epoch 9 - iter 120/121 - loss 0.01452552 - time (sec): 7.90 - samples/sec: 3117.79 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:38:29,315 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:29,316 EPOCH 9 done: loss 0.0145 - lr: 0.000006
2023-10-13 10:38:30,183 DEV : loss 0.18977651000022888 - f1-score (micro avg) 0.8291
2023-10-13 10:38:30,189 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:30,924 epoch 10 - iter 12/121 - loss 0.02411538 - time (sec): 0.73 - samples/sec: 3081.40 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:38:31,702 epoch 10 - iter 24/121 - loss 0.02367473 - time (sec): 1.51 - samples/sec: 3104.66 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:38:32,515 epoch 10 - iter 36/121 - loss 0.02248721 - time (sec): 2.32 - samples/sec: 3130.56 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:38:33,292 epoch 10 - iter 48/121 - loss 0.01733333 - time (sec): 3.10 - samples/sec: 3192.98 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:38:34,064 epoch 10 - iter 60/121 - loss 0.01485533 - time (sec): 3.87 - samples/sec: 3204.82 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:38:34,826 epoch 10 - iter 72/121 - loss 0.01387192 - time (sec): 4.64 - samples/sec: 3146.95 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:38:35,572 epoch 10 - iter 84/121 - loss 0.01314430 - time (sec): 5.38 - samples/sec: 3131.59 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:38:36,354 epoch 10 - iter 96/121 - loss 0.01286429 - time (sec): 6.16 - samples/sec: 3102.54 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:38:37,127 epoch 10 - iter 108/121 - loss 0.01159406 - time (sec): 6.94 - samples/sec: 3136.98 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:38:38,023 epoch 10 - iter 120/121 - loss 0.01076949 - time (sec): 7.83 - samples/sec: 3132.60 - lr: 0.000000 - momentum: 0.000000
2023-10-13 10:38:38,078 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:38,079 EPOCH 10 done: loss 0.0107 - lr: 0.000000
2023-10-13 10:38:38,921 DEV : loss 0.1880086213350296 - f1-score (micro avg) 0.8252
2023-10-13 10:38:39,331 ----------------------------------------------------------------------------------------------------
2023-10-13 10:38:39,332 Loading model from best epoch ...
2023-10-13 10:38:41,014 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 10:38:42,075
Results:
- F-score (micro) 0.7979
- F-score (macro) 0.4599
- Accuracy 0.6865
By class:
precision recall f1-score support
pers 0.8311 0.8849 0.8571 139
scope 0.7603 0.8605 0.8073 129
work 0.6737 0.8000 0.7314 80
loc 1.0000 0.2222 0.3636 9
date 0.0000 0.0000 0.0000 3
object 0.0000 0.0000 0.0000 0
micro avg 0.7653 0.8333 0.7979 360
macro avg 0.5442 0.4613 0.4599 360
weighted avg 0.7680 0.8333 0.7919 360
2023-10-13 10:38:42,076 ----------------------------------------------------------------------------------------------------
|