Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +246 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ff98a735ffcd3727123f67028771e9b65a0410377f4568d6bb1b612372b031a
|
3 |
+
size 443335879
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 16:33:44 0.0000 0.4771 0.1404 0.6390 0.7532 0.6914 0.5601
|
3 |
+
2 16:35:05 0.0000 0.1364 0.1494 0.6751 0.8104 0.7366 0.6086
|
4 |
+
3 16:36:26 0.0000 0.0912 0.1711 0.7682 0.7841 0.7761 0.6630
|
5 |
+
4 16:37:47 0.0000 0.0647 0.2201 0.7341 0.8173 0.7734 0.6582
|
6 |
+
5 16:39:09 0.0000 0.0466 0.1859 0.7751 0.8093 0.7918 0.6916
|
7 |
+
6 16:40:30 0.0000 0.0353 0.2059 0.7870 0.8001 0.7935 0.6926
|
8 |
+
7 16:41:52 0.0000 0.0226 0.2367 0.7784 0.8167 0.7971 0.6896
|
9 |
+
8 16:43:13 0.0000 0.0158 0.2536 0.7852 0.8121 0.7984 0.6958
|
10 |
+
9 16:44:35 0.0000 0.0100 0.2553 0.7919 0.8127 0.8021 0.7021
|
11 |
+
10 16:45:57 0.0000 0.0067 0.2592 0.7992 0.8184 0.8087 0.7106
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 16:32:27,478 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 16:32:27,479 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 16:32:27,479 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 16:32:27,480 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
53 |
+
2023-10-13 16:32:27,480 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 16:32:27,480 Train: 5901 sentences
|
55 |
+
2023-10-13 16:32:27,480 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 16:32:27,480 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 16:32:27,480 Training Params:
|
58 |
+
2023-10-13 16:32:27,480 - learning_rate: "5e-05"
|
59 |
+
2023-10-13 16:32:27,480 - mini_batch_size: "4"
|
60 |
+
2023-10-13 16:32:27,480 - max_epochs: "10"
|
61 |
+
2023-10-13 16:32:27,480 - shuffle: "True"
|
62 |
+
2023-10-13 16:32:27,480 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 16:32:27,480 Plugins:
|
64 |
+
2023-10-13 16:32:27,480 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 16:32:27,480 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 16:32:27,480 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 16:32:27,480 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 16:32:27,480 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 16:32:27,480 Computation:
|
70 |
+
2023-10-13 16:32:27,480 - compute on device: cuda:0
|
71 |
+
2023-10-13 16:32:27,480 - embedding storage: none
|
72 |
+
2023-10-13 16:32:27,480 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 16:32:27,480 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
|
74 |
+
2023-10-13 16:32:27,480 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 16:32:27,480 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 16:32:34,656 epoch 1 - iter 147/1476 - loss 2.19264043 - time (sec): 7.17 - samples/sec: 2468.65 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-13 16:32:41,887 epoch 1 - iter 294/1476 - loss 1.34715324 - time (sec): 14.41 - samples/sec: 2494.63 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-13 16:32:48,820 epoch 1 - iter 441/1476 - loss 1.03252218 - time (sec): 21.34 - samples/sec: 2436.06 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-13 16:32:55,839 epoch 1 - iter 588/1476 - loss 0.84618778 - time (sec): 28.36 - samples/sec: 2423.52 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-13 16:33:03,052 epoch 1 - iter 735/1476 - loss 0.73617883 - time (sec): 35.57 - samples/sec: 2406.00 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-13 16:33:10,075 epoch 1 - iter 882/1476 - loss 0.65221352 - time (sec): 42.59 - samples/sec: 2401.55 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-13 16:33:16,986 epoch 1 - iter 1029/1476 - loss 0.59171549 - time (sec): 49.50 - samples/sec: 2395.74 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-13 16:33:23,748 epoch 1 - iter 1176/1476 - loss 0.54902197 - time (sec): 56.27 - samples/sec: 2370.02 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-13 16:33:30,731 epoch 1 - iter 1323/1476 - loss 0.50983066 - time (sec): 63.25 - samples/sec: 2366.30 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-13 16:33:37,571 epoch 1 - iter 1470/1476 - loss 0.47806023 - time (sec): 70.09 - samples/sec: 2366.46 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-13 16:33:37,841 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 16:33:37,841 EPOCH 1 done: loss 0.4771 - lr: 0.000050
|
88 |
+
2023-10-13 16:33:44,025 DEV : loss 0.14038856327533722 - f1-score (micro avg) 0.6914
|
89 |
+
2023-10-13 16:33:44,053 saving best model
|
90 |
+
2023-10-13 16:33:44,489 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 16:33:51,114 epoch 2 - iter 147/1476 - loss 0.13041987 - time (sec): 6.62 - samples/sec: 2298.32 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-13 16:33:57,959 epoch 2 - iter 294/1476 - loss 0.13920225 - time (sec): 13.47 - samples/sec: 2333.22 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-13 16:34:04,703 epoch 2 - iter 441/1476 - loss 0.13806486 - time (sec): 20.21 - samples/sec: 2363.50 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-13 16:34:11,574 epoch 2 - iter 588/1476 - loss 0.13521110 - time (sec): 27.08 - samples/sec: 2354.34 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-13 16:34:18,376 epoch 2 - iter 735/1476 - loss 0.14108629 - time (sec): 33.89 - samples/sec: 2331.03 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-13 16:34:25,372 epoch 2 - iter 882/1476 - loss 0.13917247 - time (sec): 40.88 - samples/sec: 2349.90 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-13 16:34:32,628 epoch 2 - iter 1029/1476 - loss 0.13722354 - time (sec): 48.14 - samples/sec: 2377.81 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-13 16:34:39,515 epoch 2 - iter 1176/1476 - loss 0.13237447 - time (sec): 55.02 - samples/sec: 2379.51 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-13 16:34:46,566 epoch 2 - iter 1323/1476 - loss 0.13528695 - time (sec): 62.08 - samples/sec: 2384.90 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-13 16:34:53,726 epoch 2 - iter 1470/1476 - loss 0.13631749 - time (sec): 69.24 - samples/sec: 2391.96 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-13 16:34:54,002 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 16:34:54,002 EPOCH 2 done: loss 0.1364 - lr: 0.000044
|
103 |
+
2023-10-13 16:35:05,260 DEV : loss 0.14942534267902374 - f1-score (micro avg) 0.7366
|
104 |
+
2023-10-13 16:35:05,289 saving best model
|
105 |
+
2023-10-13 16:35:05,779 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 16:35:12,635 epoch 3 - iter 147/1476 - loss 0.07591353 - time (sec): 6.85 - samples/sec: 2265.56 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-13 16:35:19,528 epoch 3 - iter 294/1476 - loss 0.09227817 - time (sec): 13.74 - samples/sec: 2354.13 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-13 16:35:26,354 epoch 3 - iter 441/1476 - loss 0.09626614 - time (sec): 20.57 - samples/sec: 2363.80 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-13 16:35:33,095 epoch 3 - iter 588/1476 - loss 0.09646343 - time (sec): 27.31 - samples/sec: 2347.82 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-13 16:35:40,240 epoch 3 - iter 735/1476 - loss 0.09416145 - time (sec): 34.45 - samples/sec: 2367.35 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-13 16:35:47,371 epoch 3 - iter 882/1476 - loss 0.09456799 - time (sec): 41.59 - samples/sec: 2406.31 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-13 16:35:54,299 epoch 3 - iter 1029/1476 - loss 0.09149587 - time (sec): 48.51 - samples/sec: 2393.68 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-13 16:36:01,363 epoch 3 - iter 1176/1476 - loss 0.09190785 - time (sec): 55.58 - samples/sec: 2410.90 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-13 16:36:08,187 epoch 3 - iter 1323/1476 - loss 0.09115192 - time (sec): 62.40 - samples/sec: 2407.82 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-13 16:36:15,108 epoch 3 - iter 1470/1476 - loss 0.09131695 - time (sec): 69.32 - samples/sec: 2391.98 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-13 16:36:15,376 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 16:36:15,376 EPOCH 3 done: loss 0.0912 - lr: 0.000039
|
118 |
+
2023-10-13 16:36:26,447 DEV : loss 0.17109665274620056 - f1-score (micro avg) 0.7761
|
119 |
+
2023-10-13 16:36:26,476 saving best model
|
120 |
+
2023-10-13 16:36:27,050 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 16:36:33,918 epoch 4 - iter 147/1476 - loss 0.06448851 - time (sec): 6.86 - samples/sec: 2220.09 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-13 16:36:40,610 epoch 4 - iter 294/1476 - loss 0.05935983 - time (sec): 13.56 - samples/sec: 2294.42 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-13 16:36:47,491 epoch 4 - iter 441/1476 - loss 0.06577537 - time (sec): 20.44 - samples/sec: 2339.67 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-13 16:36:54,183 epoch 4 - iter 588/1476 - loss 0.06370900 - time (sec): 27.13 - samples/sec: 2330.56 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-13 16:37:01,145 epoch 4 - iter 735/1476 - loss 0.06430938 - time (sec): 34.09 - samples/sec: 2344.21 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-13 16:37:08,310 epoch 4 - iter 882/1476 - loss 0.06262401 - time (sec): 41.26 - samples/sec: 2361.23 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-13 16:37:15,650 epoch 4 - iter 1029/1476 - loss 0.06226410 - time (sec): 48.60 - samples/sec: 2394.58 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-13 16:37:22,567 epoch 4 - iter 1176/1476 - loss 0.06322309 - time (sec): 55.51 - samples/sec: 2395.17 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-13 16:37:29,580 epoch 4 - iter 1323/1476 - loss 0.06623547 - time (sec): 62.53 - samples/sec: 2394.70 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-13 16:37:36,240 epoch 4 - iter 1470/1476 - loss 0.06439991 - time (sec): 69.18 - samples/sec: 2395.39 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-13 16:37:36,522 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 16:37:36,522 EPOCH 4 done: loss 0.0647 - lr: 0.000033
|
133 |
+
2023-10-13 16:37:47,651 DEV : loss 0.22011879086494446 - f1-score (micro avg) 0.7734
|
134 |
+
2023-10-13 16:37:47,680 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-13 16:37:54,663 epoch 5 - iter 147/1476 - loss 0.05406225 - time (sec): 6.98 - samples/sec: 2371.22 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-10-13 16:38:02,070 epoch 5 - iter 294/1476 - loss 0.05659229 - time (sec): 14.39 - samples/sec: 2313.32 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-13 16:38:09,156 epoch 5 - iter 441/1476 - loss 0.05185982 - time (sec): 21.48 - samples/sec: 2344.21 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-13 16:38:15,969 epoch 5 - iter 588/1476 - loss 0.05025944 - time (sec): 28.29 - samples/sec: 2347.40 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-13 16:38:22,835 epoch 5 - iter 735/1476 - loss 0.04794011 - time (sec): 35.15 - samples/sec: 2348.11 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-13 16:38:29,650 epoch 5 - iter 882/1476 - loss 0.04879169 - time (sec): 41.97 - samples/sec: 2336.67 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-10-13 16:38:36,556 epoch 5 - iter 1029/1476 - loss 0.04784084 - time (sec): 48.88 - samples/sec: 2340.55 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-13 16:38:43,817 epoch 5 - iter 1176/1476 - loss 0.04785536 - time (sec): 56.14 - samples/sec: 2366.35 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-13 16:38:50,949 epoch 5 - iter 1323/1476 - loss 0.04673364 - time (sec): 63.27 - samples/sec: 2382.16 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-13 16:38:57,668 epoch 5 - iter 1470/1476 - loss 0.04668226 - time (sec): 69.99 - samples/sec: 2369.74 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-13 16:38:57,926 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-13 16:38:57,927 EPOCH 5 done: loss 0.0466 - lr: 0.000028
|
147 |
+
2023-10-13 16:39:09,057 DEV : loss 0.18591712415218353 - f1-score (micro avg) 0.7918
|
148 |
+
2023-10-13 16:39:09,086 saving best model
|
149 |
+
2023-10-13 16:39:09,678 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-13 16:39:16,341 epoch 6 - iter 147/1476 - loss 0.02523404 - time (sec): 6.66 - samples/sec: 2241.56 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-13 16:39:23,617 epoch 6 - iter 294/1476 - loss 0.02890210 - time (sec): 13.94 - samples/sec: 2449.63 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-13 16:39:30,543 epoch 6 - iter 441/1476 - loss 0.03369659 - time (sec): 20.86 - samples/sec: 2447.46 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-13 16:39:37,495 epoch 6 - iter 588/1476 - loss 0.03450237 - time (sec): 27.81 - samples/sec: 2424.06 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-13 16:39:44,573 epoch 6 - iter 735/1476 - loss 0.03447603 - time (sec): 34.89 - samples/sec: 2434.04 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-10-13 16:39:51,749 epoch 6 - iter 882/1476 - loss 0.03728195 - time (sec): 42.07 - samples/sec: 2428.75 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-13 16:39:58,407 epoch 6 - iter 1029/1476 - loss 0.03609371 - time (sec): 48.73 - samples/sec: 2409.30 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-13 16:40:05,348 epoch 6 - iter 1176/1476 - loss 0.03396739 - time (sec): 55.67 - samples/sec: 2406.36 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-13 16:40:12,191 epoch 6 - iter 1323/1476 - loss 0.03505791 - time (sec): 62.51 - samples/sec: 2396.41 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-13 16:40:19,135 epoch 6 - iter 1470/1476 - loss 0.03535902 - time (sec): 69.45 - samples/sec: 2389.64 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-10-13 16:40:19,401 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-13 16:40:19,401 EPOCH 6 done: loss 0.0353 - lr: 0.000022
|
162 |
+
2023-10-13 16:40:30,593 DEV : loss 0.20590120553970337 - f1-score (micro avg) 0.7935
|
163 |
+
2023-10-13 16:40:30,622 saving best model
|
164 |
+
2023-10-13 16:40:31,204 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-13 16:40:38,565 epoch 7 - iter 147/1476 - loss 0.01875450 - time (sec): 7.36 - samples/sec: 2324.91 - lr: 0.000022 - momentum: 0.000000
|
166 |
+
2023-10-13 16:40:45,309 epoch 7 - iter 294/1476 - loss 0.01827635 - time (sec): 14.10 - samples/sec: 2279.02 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-13 16:40:52,625 epoch 7 - iter 441/1476 - loss 0.02228262 - time (sec): 21.42 - samples/sec: 2360.36 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-13 16:41:00,112 epoch 7 - iter 588/1476 - loss 0.02120762 - time (sec): 28.91 - samples/sec: 2398.25 - lr: 0.000020 - momentum: 0.000000
|
169 |
+
2023-10-13 16:41:06,805 epoch 7 - iter 735/1476 - loss 0.02126680 - time (sec): 35.60 - samples/sec: 2370.88 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-13 16:41:13,433 epoch 7 - iter 882/1476 - loss 0.02140474 - time (sec): 42.23 - samples/sec: 2362.59 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-13 16:41:19,855 epoch 7 - iter 1029/1476 - loss 0.02223445 - time (sec): 48.65 - samples/sec: 2381.63 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-13 16:41:26,472 epoch 7 - iter 1176/1476 - loss 0.02219911 - time (sec): 55.26 - samples/sec: 2380.18 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-13 16:41:33,320 epoch 7 - iter 1323/1476 - loss 0.02216569 - time (sec): 62.11 - samples/sec: 2376.25 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-13 16:41:40,533 epoch 7 - iter 1470/1476 - loss 0.02249640 - time (sec): 69.33 - samples/sec: 2392.97 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-13 16:41:40,788 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-13 16:41:40,788 EPOCH 7 done: loss 0.0226 - lr: 0.000017
|
177 |
+
2023-10-13 16:41:51,974 DEV : loss 0.23674637079238892 - f1-score (micro avg) 0.7971
|
178 |
+
2023-10-13 16:41:52,003 saving best model
|
179 |
+
2023-10-13 16:41:52,500 ----------------------------------------------------------------------------------------------------
|
180 |
+
2023-10-13 16:41:59,567 epoch 8 - iter 147/1476 - loss 0.01813003 - time (sec): 7.07 - samples/sec: 2377.41 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-13 16:42:06,585 epoch 8 - iter 294/1476 - loss 0.01758301 - time (sec): 14.08 - samples/sec: 2397.59 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-13 16:42:13,868 epoch 8 - iter 441/1476 - loss 0.02116504 - time (sec): 21.37 - samples/sec: 2488.85 - lr: 0.000015 - momentum: 0.000000
|
183 |
+
2023-10-13 16:42:20,522 epoch 8 - iter 588/1476 - loss 0.02109938 - time (sec): 28.02 - samples/sec: 2426.58 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-13 16:42:27,485 epoch 8 - iter 735/1476 - loss 0.01950654 - time (sec): 34.98 - samples/sec: 2394.96 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-10-13 16:42:34,305 epoch 8 - iter 882/1476 - loss 0.01842251 - time (sec): 41.80 - samples/sec: 2372.96 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-13 16:42:41,420 epoch 8 - iter 1029/1476 - loss 0.01674893 - time (sec): 48.92 - samples/sec: 2354.63 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-13 16:42:48,112 epoch 8 - iter 1176/1476 - loss 0.01663061 - time (sec): 55.61 - samples/sec: 2343.53 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-13 16:42:55,261 epoch 8 - iter 1323/1476 - loss 0.01632528 - time (sec): 62.76 - samples/sec: 2359.37 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-13 16:43:02,148 epoch 8 - iter 1470/1476 - loss 0.01581879 - time (sec): 69.65 - samples/sec: 2380.38 - lr: 0.000011 - momentum: 0.000000
|
190 |
+
2023-10-13 16:43:02,409 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-13 16:43:02,409 EPOCH 8 done: loss 0.0158 - lr: 0.000011
|
192 |
+
2023-10-13 16:43:13,521 DEV : loss 0.25357791781425476 - f1-score (micro avg) 0.7984
|
193 |
+
2023-10-13 16:43:13,550 saving best model
|
194 |
+
2023-10-13 16:43:14,117 ----------------------------------------------------------------------------------------------------
|
195 |
+
2023-10-13 16:43:21,014 epoch 9 - iter 147/1476 - loss 0.00927471 - time (sec): 6.89 - samples/sec: 2259.68 - lr: 0.000011 - momentum: 0.000000
|
196 |
+
2023-10-13 16:43:28,062 epoch 9 - iter 294/1476 - loss 0.00809657 - time (sec): 13.94 - samples/sec: 2364.85 - lr: 0.000010 - momentum: 0.000000
|
197 |
+
2023-10-13 16:43:34,763 epoch 9 - iter 441/1476 - loss 0.00782182 - time (sec): 20.64 - samples/sec: 2353.66 - lr: 0.000009 - momentum: 0.000000
|
198 |
+
2023-10-13 16:43:41,562 epoch 9 - iter 588/1476 - loss 0.00861677 - time (sec): 27.44 - samples/sec: 2378.37 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-13 16:43:48,725 epoch 9 - iter 735/1476 - loss 0.00955088 - time (sec): 34.60 - samples/sec: 2408.79 - lr: 0.000008 - momentum: 0.000000
|
200 |
+
2023-10-13 16:43:55,520 epoch 9 - iter 882/1476 - loss 0.00855623 - time (sec): 41.40 - samples/sec: 2391.02 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-13 16:44:02,540 epoch 9 - iter 1029/1476 - loss 0.00809094 - time (sec): 48.42 - samples/sec: 2397.34 - lr: 0.000007 - momentum: 0.000000
|
202 |
+
2023-10-13 16:44:09,395 epoch 9 - iter 1176/1476 - loss 0.00852934 - time (sec): 55.27 - samples/sec: 2381.55 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-13 16:44:16,493 epoch 9 - iter 1323/1476 - loss 0.00844392 - time (sec): 62.37 - samples/sec: 2374.19 - lr: 0.000006 - momentum: 0.000000
|
204 |
+
2023-10-13 16:44:23,796 epoch 9 - iter 1470/1476 - loss 0.00997719 - time (sec): 69.67 - samples/sec: 2376.32 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-13 16:44:24,083 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-13 16:44:24,083 EPOCH 9 done: loss 0.0100 - lr: 0.000006
|
207 |
+
2023-10-13 16:44:35,753 DEV : loss 0.25528380274772644 - f1-score (micro avg) 0.8021
|
208 |
+
2023-10-13 16:44:35,782 saving best model
|
209 |
+
2023-10-13 16:44:36,372 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-10-13 16:44:43,685 epoch 10 - iter 147/1476 - loss 0.00753215 - time (sec): 7.31 - samples/sec: 2427.92 - lr: 0.000005 - momentum: 0.000000
|
211 |
+
2023-10-13 16:44:50,427 epoch 10 - iter 294/1476 - loss 0.00733874 - time (sec): 14.05 - samples/sec: 2397.65 - lr: 0.000004 - momentum: 0.000000
|
212 |
+
2023-10-13 16:44:57,073 epoch 10 - iter 441/1476 - loss 0.00807781 - time (sec): 20.70 - samples/sec: 2379.64 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-13 16:45:04,012 epoch 10 - iter 588/1476 - loss 0.00716263 - time (sec): 27.63 - samples/sec: 2380.05 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-10-13 16:45:10,975 epoch 10 - iter 735/1476 - loss 0.00686967 - time (sec): 34.60 - samples/sec: 2365.22 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-13 16:45:18,281 epoch 10 - iter 882/1476 - loss 0.00663991 - time (sec): 41.90 - samples/sec: 2403.12 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-13 16:45:24,959 epoch 10 - iter 1029/1476 - loss 0.00626594 - time (sec): 48.58 - samples/sec: 2376.51 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-13 16:45:32,198 epoch 10 - iter 1176/1476 - loss 0.00672382 - time (sec): 55.82 - samples/sec: 2373.49 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-13 16:45:39,249 epoch 10 - iter 1323/1476 - loss 0.00733306 - time (sec): 62.87 - samples/sec: 2376.93 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-13 16:45:46,111 epoch 10 - iter 1470/1476 - loss 0.00668996 - time (sec): 69.73 - samples/sec: 2378.72 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-13 16:45:46,370 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-13 16:45:46,370 EPOCH 10 done: loss 0.0067 - lr: 0.000000
|
222 |
+
2023-10-13 16:45:57,519 DEV : loss 0.2591579258441925 - f1-score (micro avg) 0.8087
|
223 |
+
2023-10-13 16:45:57,551 saving best model
|
224 |
+
2023-10-13 16:45:58,550 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-13 16:45:58,552 Loading model from best epoch ...
|
226 |
+
2023-10-13 16:46:00,002 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
227 |
+
2023-10-13 16:46:05,936
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.7887
|
230 |
+
- F-score (macro) 0.6932
|
231 |
+
- Accuracy 0.6774
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
loc 0.8380 0.8800 0.8584 858
|
237 |
+
pers 0.7456 0.7858 0.7652 537
|
238 |
+
org 0.5489 0.5530 0.5509 132
|
239 |
+
time 0.5373 0.6667 0.5950 54
|
240 |
+
prod 0.7647 0.6393 0.6964 61
|
241 |
+
|
242 |
+
micro avg 0.7712 0.8069 0.7887 1642
|
243 |
+
macro avg 0.6869 0.7050 0.6932 1642
|
244 |
+
weighted avg 0.7719 0.8069 0.7885 1642
|
245 |
+
|
246 |
+
2023-10-13 16:46:05,936 ----------------------------------------------------------------------------------------------------
|