File size: 24,069 Bytes
6007d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-17 21:26:40,875 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,876 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 21:26:40,876 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,876 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
 - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-17 21:26:40,876 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,876 Train:  5901 sentences
2023-10-17 21:26:40,876         (train_with_dev=False, train_with_test=False)
2023-10-17 21:26:40,876 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,876 Training Params:
2023-10-17 21:26:40,876  - learning_rate: "3e-05" 
2023-10-17 21:26:40,876  - mini_batch_size: "8"
2023-10-17 21:26:40,876  - max_epochs: "10"
2023-10-17 21:26:40,876  - shuffle: "True"
2023-10-17 21:26:40,876 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,876 Plugins:
2023-10-17 21:26:40,877  - TensorboardLogger
2023-10-17 21:26:40,877  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 21:26:40,877 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,877 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 21:26:40,877  - metric: "('micro avg', 'f1-score')"
2023-10-17 21:26:40,877 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,877 Computation:
2023-10-17 21:26:40,877  - compute on device: cuda:0
2023-10-17 21:26:40,877  - embedding storage: none
2023-10-17 21:26:40,877 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,877 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-17 21:26:40,877 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,877 ----------------------------------------------------------------------------------------------------
2023-10-17 21:26:40,877 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 21:26:45,615 epoch 1 - iter 73/738 - loss 3.49952752 - time (sec): 4.74 - samples/sec: 3401.60 - lr: 0.000003 - momentum: 0.000000
2023-10-17 21:26:51,525 epoch 1 - iter 146/738 - loss 2.16207004 - time (sec): 10.65 - samples/sec: 3375.23 - lr: 0.000006 - momentum: 0.000000
2023-10-17 21:26:56,443 epoch 1 - iter 219/738 - loss 1.66274405 - time (sec): 15.56 - samples/sec: 3326.52 - lr: 0.000009 - momentum: 0.000000
2023-10-17 21:27:00,716 epoch 1 - iter 292/738 - loss 1.38721801 - time (sec): 19.84 - samples/sec: 3357.65 - lr: 0.000012 - momentum: 0.000000
2023-10-17 21:27:05,522 epoch 1 - iter 365/738 - loss 1.18355146 - time (sec): 24.64 - samples/sec: 3350.31 - lr: 0.000015 - momentum: 0.000000
2023-10-17 21:27:10,816 epoch 1 - iter 438/738 - loss 1.02870123 - time (sec): 29.94 - samples/sec: 3358.32 - lr: 0.000018 - momentum: 0.000000
2023-10-17 21:27:15,600 epoch 1 - iter 511/738 - loss 0.91506435 - time (sec): 34.72 - samples/sec: 3358.58 - lr: 0.000021 - momentum: 0.000000
2023-10-17 21:27:20,128 epoch 1 - iter 584/738 - loss 0.83281866 - time (sec): 39.25 - samples/sec: 3372.24 - lr: 0.000024 - momentum: 0.000000
2023-10-17 21:27:24,700 epoch 1 - iter 657/738 - loss 0.76709624 - time (sec): 43.82 - samples/sec: 3378.50 - lr: 0.000027 - momentum: 0.000000
2023-10-17 21:27:29,463 epoch 1 - iter 730/738 - loss 0.70974504 - time (sec): 48.59 - samples/sec: 3382.19 - lr: 0.000030 - momentum: 0.000000
2023-10-17 21:27:29,971 ----------------------------------------------------------------------------------------------------
2023-10-17 21:27:29,972 EPOCH 1 done: loss 0.7025 - lr: 0.000030
2023-10-17 21:27:35,758 DEV : loss 0.11762610077857971 - f1-score (micro avg)  0.7482
2023-10-17 21:27:35,791 saving best model
2023-10-17 21:27:36,662 ----------------------------------------------------------------------------------------------------
2023-10-17 21:27:41,652 epoch 2 - iter 73/738 - loss 0.14984083 - time (sec): 4.99 - samples/sec: 3222.14 - lr: 0.000030 - momentum: 0.000000
2023-10-17 21:27:46,811 epoch 2 - iter 146/738 - loss 0.15409294 - time (sec): 10.15 - samples/sec: 3379.77 - lr: 0.000029 - momentum: 0.000000
2023-10-17 21:27:51,908 epoch 2 - iter 219/738 - loss 0.14322277 - time (sec): 15.24 - samples/sec: 3332.70 - lr: 0.000029 - momentum: 0.000000
2023-10-17 21:27:56,414 epoch 2 - iter 292/738 - loss 0.13804033 - time (sec): 19.75 - samples/sec: 3368.52 - lr: 0.000029 - momentum: 0.000000
2023-10-17 21:28:01,318 epoch 2 - iter 365/738 - loss 0.13219670 - time (sec): 24.65 - samples/sec: 3397.53 - lr: 0.000028 - momentum: 0.000000
2023-10-17 21:28:06,597 epoch 2 - iter 438/738 - loss 0.13134819 - time (sec): 29.93 - samples/sec: 3363.86 - lr: 0.000028 - momentum: 0.000000
2023-10-17 21:28:11,528 epoch 2 - iter 511/738 - loss 0.12866441 - time (sec): 34.86 - samples/sec: 3359.08 - lr: 0.000028 - momentum: 0.000000
2023-10-17 21:28:16,885 epoch 2 - iter 584/738 - loss 0.12449709 - time (sec): 40.22 - samples/sec: 3326.61 - lr: 0.000027 - momentum: 0.000000
2023-10-17 21:28:21,525 epoch 2 - iter 657/738 - loss 0.12254254 - time (sec): 44.86 - samples/sec: 3341.34 - lr: 0.000027 - momentum: 0.000000
2023-10-17 21:28:26,153 epoch 2 - iter 730/738 - loss 0.12293368 - time (sec): 49.49 - samples/sec: 3330.98 - lr: 0.000027 - momentum: 0.000000
2023-10-17 21:28:26,639 ----------------------------------------------------------------------------------------------------
2023-10-17 21:28:26,639 EPOCH 2 done: loss 0.1226 - lr: 0.000027
2023-10-17 21:28:37,830 DEV : loss 0.08953238278627396 - f1-score (micro avg)  0.8325
2023-10-17 21:28:37,863 saving best model
2023-10-17 21:28:38,345 ----------------------------------------------------------------------------------------------------
2023-10-17 21:28:43,166 epoch 3 - iter 73/738 - loss 0.06498284 - time (sec): 4.82 - samples/sec: 3316.94 - lr: 0.000026 - momentum: 0.000000
2023-10-17 21:28:48,268 epoch 3 - iter 146/738 - loss 0.07253182 - time (sec): 9.92 - samples/sec: 3292.11 - lr: 0.000026 - momentum: 0.000000
2023-10-17 21:28:53,207 epoch 3 - iter 219/738 - loss 0.07369571 - time (sec): 14.86 - samples/sec: 3307.50 - lr: 0.000026 - momentum: 0.000000
2023-10-17 21:28:58,390 epoch 3 - iter 292/738 - loss 0.07104734 - time (sec): 20.04 - samples/sec: 3291.04 - lr: 0.000025 - momentum: 0.000000
2023-10-17 21:29:03,747 epoch 3 - iter 365/738 - loss 0.07010578 - time (sec): 25.40 - samples/sec: 3289.69 - lr: 0.000025 - momentum: 0.000000
2023-10-17 21:29:08,795 epoch 3 - iter 438/738 - loss 0.07173198 - time (sec): 30.44 - samples/sec: 3280.44 - lr: 0.000025 - momentum: 0.000000
2023-10-17 21:29:13,423 epoch 3 - iter 511/738 - loss 0.07041391 - time (sec): 35.07 - samples/sec: 3281.82 - lr: 0.000024 - momentum: 0.000000
2023-10-17 21:29:18,816 epoch 3 - iter 584/738 - loss 0.06977851 - time (sec): 40.47 - samples/sec: 3282.39 - lr: 0.000024 - momentum: 0.000000
2023-10-17 21:29:23,695 epoch 3 - iter 657/738 - loss 0.06917953 - time (sec): 45.34 - samples/sec: 3292.70 - lr: 0.000024 - momentum: 0.000000
2023-10-17 21:29:28,226 epoch 3 - iter 730/738 - loss 0.07009721 - time (sec): 49.87 - samples/sec: 3304.46 - lr: 0.000023 - momentum: 0.000000
2023-10-17 21:29:28,708 ----------------------------------------------------------------------------------------------------
2023-10-17 21:29:28,709 EPOCH 3 done: loss 0.0701 - lr: 0.000023
2023-10-17 21:29:40,107 DEV : loss 0.1102706640958786 - f1-score (micro avg)  0.8405
2023-10-17 21:29:40,146 saving best model
2023-10-17 21:29:40,654 ----------------------------------------------------------------------------------------------------
2023-10-17 21:29:45,608 epoch 4 - iter 73/738 - loss 0.02968515 - time (sec): 4.95 - samples/sec: 3166.16 - lr: 0.000023 - momentum: 0.000000
2023-10-17 21:29:50,421 epoch 4 - iter 146/738 - loss 0.03527936 - time (sec): 9.76 - samples/sec: 3318.65 - lr: 0.000023 - momentum: 0.000000
2023-10-17 21:29:55,855 epoch 4 - iter 219/738 - loss 0.03661792 - time (sec): 15.20 - samples/sec: 3291.89 - lr: 0.000022 - momentum: 0.000000
2023-10-17 21:30:00,595 epoch 4 - iter 292/738 - loss 0.04111833 - time (sec): 19.94 - samples/sec: 3293.63 - lr: 0.000022 - momentum: 0.000000
2023-10-17 21:30:04,902 epoch 4 - iter 365/738 - loss 0.04094378 - time (sec): 24.25 - samples/sec: 3299.44 - lr: 0.000022 - momentum: 0.000000
2023-10-17 21:30:09,927 epoch 4 - iter 438/738 - loss 0.04325232 - time (sec): 29.27 - samples/sec: 3265.15 - lr: 0.000021 - momentum: 0.000000
2023-10-17 21:30:15,565 epoch 4 - iter 511/738 - loss 0.04681831 - time (sec): 34.91 - samples/sec: 3290.65 - lr: 0.000021 - momentum: 0.000000
2023-10-17 21:30:20,255 epoch 4 - iter 584/738 - loss 0.04786698 - time (sec): 39.60 - samples/sec: 3290.40 - lr: 0.000021 - momentum: 0.000000
2023-10-17 21:30:25,799 epoch 4 - iter 657/738 - loss 0.04774352 - time (sec): 45.14 - samples/sec: 3279.63 - lr: 0.000020 - momentum: 0.000000
2023-10-17 21:30:30,533 epoch 4 - iter 730/738 - loss 0.04825194 - time (sec): 49.88 - samples/sec: 3292.97 - lr: 0.000020 - momentum: 0.000000
2023-10-17 21:30:31,199 ----------------------------------------------------------------------------------------------------
2023-10-17 21:30:31,199 EPOCH 4 done: loss 0.0483 - lr: 0.000020
2023-10-17 21:30:42,413 DEV : loss 0.1353892683982849 - f1-score (micro avg)  0.8416
2023-10-17 21:30:42,446 saving best model
2023-10-17 21:30:42,928 ----------------------------------------------------------------------------------------------------
2023-10-17 21:30:47,459 epoch 5 - iter 73/738 - loss 0.03440303 - time (sec): 4.53 - samples/sec: 3382.11 - lr: 0.000020 - momentum: 0.000000
2023-10-17 21:30:52,224 epoch 5 - iter 146/738 - loss 0.03591970 - time (sec): 9.29 - samples/sec: 3346.20 - lr: 0.000019 - momentum: 0.000000
2023-10-17 21:30:57,359 epoch 5 - iter 219/738 - loss 0.03487105 - time (sec): 14.43 - samples/sec: 3341.94 - lr: 0.000019 - momentum: 0.000000
2023-10-17 21:31:02,051 epoch 5 - iter 292/738 - loss 0.03396132 - time (sec): 19.12 - samples/sec: 3302.02 - lr: 0.000019 - momentum: 0.000000
2023-10-17 21:31:07,353 epoch 5 - iter 365/738 - loss 0.03575017 - time (sec): 24.42 - samples/sec: 3292.46 - lr: 0.000018 - momentum: 0.000000
2023-10-17 21:31:13,225 epoch 5 - iter 438/738 - loss 0.03630382 - time (sec): 30.29 - samples/sec: 3317.94 - lr: 0.000018 - momentum: 0.000000
2023-10-17 21:31:17,948 epoch 5 - iter 511/738 - loss 0.03628542 - time (sec): 35.02 - samples/sec: 3306.47 - lr: 0.000018 - momentum: 0.000000
2023-10-17 21:31:22,791 epoch 5 - iter 584/738 - loss 0.03570918 - time (sec): 39.86 - samples/sec: 3311.13 - lr: 0.000017 - momentum: 0.000000
2023-10-17 21:31:27,930 epoch 5 - iter 657/738 - loss 0.03596680 - time (sec): 45.00 - samples/sec: 3295.33 - lr: 0.000017 - momentum: 0.000000
2023-10-17 21:31:32,885 epoch 5 - iter 730/738 - loss 0.03568567 - time (sec): 49.95 - samples/sec: 3298.95 - lr: 0.000017 - momentum: 0.000000
2023-10-17 21:31:33,323 ----------------------------------------------------------------------------------------------------
2023-10-17 21:31:33,323 EPOCH 5 done: loss 0.0355 - lr: 0.000017
2023-10-17 21:31:44,632 DEV : loss 0.14825424551963806 - f1-score (micro avg)  0.8515
2023-10-17 21:31:44,669 saving best model
2023-10-17 21:31:45,155 ----------------------------------------------------------------------------------------------------
2023-10-17 21:31:50,379 epoch 6 - iter 73/738 - loss 0.01815114 - time (sec): 5.22 - samples/sec: 3277.80 - lr: 0.000016 - momentum: 0.000000
2023-10-17 21:31:54,804 epoch 6 - iter 146/738 - loss 0.02485180 - time (sec): 9.64 - samples/sec: 3307.68 - lr: 0.000016 - momentum: 0.000000
2023-10-17 21:32:00,352 epoch 6 - iter 219/738 - loss 0.02316966 - time (sec): 15.19 - samples/sec: 3156.11 - lr: 0.000016 - momentum: 0.000000
2023-10-17 21:32:05,025 epoch 6 - iter 292/738 - loss 0.02044324 - time (sec): 19.87 - samples/sec: 3184.54 - lr: 0.000015 - momentum: 0.000000
2023-10-17 21:32:09,801 epoch 6 - iter 365/738 - loss 0.01978515 - time (sec): 24.64 - samples/sec: 3225.44 - lr: 0.000015 - momentum: 0.000000
2023-10-17 21:32:15,135 epoch 6 - iter 438/738 - loss 0.02024243 - time (sec): 29.98 - samples/sec: 3213.94 - lr: 0.000015 - momentum: 0.000000
2023-10-17 21:32:20,409 epoch 6 - iter 511/738 - loss 0.02251455 - time (sec): 35.25 - samples/sec: 3211.11 - lr: 0.000014 - momentum: 0.000000
2023-10-17 21:32:25,237 epoch 6 - iter 584/738 - loss 0.02378898 - time (sec): 40.08 - samples/sec: 3234.89 - lr: 0.000014 - momentum: 0.000000
2023-10-17 21:32:30,304 epoch 6 - iter 657/738 - loss 0.02399881 - time (sec): 45.14 - samples/sec: 3248.20 - lr: 0.000014 - momentum: 0.000000
2023-10-17 21:32:35,259 epoch 6 - iter 730/738 - loss 0.02430477 - time (sec): 50.10 - samples/sec: 3248.64 - lr: 0.000013 - momentum: 0.000000
2023-10-17 21:32:36,208 ----------------------------------------------------------------------------------------------------
2023-10-17 21:32:36,208 EPOCH 6 done: loss 0.0249 - lr: 0.000013
2023-10-17 21:32:47,447 DEV : loss 0.15200623869895935 - f1-score (micro avg)  0.8486
2023-10-17 21:32:47,479 ----------------------------------------------------------------------------------------------------
2023-10-17 21:32:52,519 epoch 7 - iter 73/738 - loss 0.02120244 - time (sec): 5.04 - samples/sec: 3271.07 - lr: 0.000013 - momentum: 0.000000
2023-10-17 21:32:57,621 epoch 7 - iter 146/738 - loss 0.01625364 - time (sec): 10.14 - samples/sec: 3284.37 - lr: 0.000013 - momentum: 0.000000
2023-10-17 21:33:02,523 epoch 7 - iter 219/738 - loss 0.01923714 - time (sec): 15.04 - samples/sec: 3233.79 - lr: 0.000012 - momentum: 0.000000
2023-10-17 21:33:07,707 epoch 7 - iter 292/738 - loss 0.01798684 - time (sec): 20.23 - samples/sec: 3282.97 - lr: 0.000012 - momentum: 0.000000
2023-10-17 21:33:12,635 epoch 7 - iter 365/738 - loss 0.01737053 - time (sec): 25.15 - samples/sec: 3289.30 - lr: 0.000012 - momentum: 0.000000
2023-10-17 21:33:17,385 epoch 7 - iter 438/738 - loss 0.01786620 - time (sec): 29.91 - samples/sec: 3292.00 - lr: 0.000011 - momentum: 0.000000
2023-10-17 21:33:22,339 epoch 7 - iter 511/738 - loss 0.01716618 - time (sec): 34.86 - samples/sec: 3311.50 - lr: 0.000011 - momentum: 0.000000
2023-10-17 21:33:27,483 epoch 7 - iter 584/738 - loss 0.01905246 - time (sec): 40.00 - samples/sec: 3293.23 - lr: 0.000011 - momentum: 0.000000
2023-10-17 21:33:32,841 epoch 7 - iter 657/738 - loss 0.01919180 - time (sec): 45.36 - samples/sec: 3291.41 - lr: 0.000010 - momentum: 0.000000
2023-10-17 21:33:37,560 epoch 7 - iter 730/738 - loss 0.01935287 - time (sec): 50.08 - samples/sec: 3281.30 - lr: 0.000010 - momentum: 0.000000
2023-10-17 21:33:38,229 ----------------------------------------------------------------------------------------------------
2023-10-17 21:33:38,229 EPOCH 7 done: loss 0.0192 - lr: 0.000010
2023-10-17 21:33:49,459 DEV : loss 0.18122123181819916 - f1-score (micro avg)  0.8484
2023-10-17 21:33:49,490 ----------------------------------------------------------------------------------------------------
2023-10-17 21:33:54,535 epoch 8 - iter 73/738 - loss 0.01103084 - time (sec): 5.04 - samples/sec: 3291.02 - lr: 0.000010 - momentum: 0.000000
2023-10-17 21:33:59,503 epoch 8 - iter 146/738 - loss 0.01060912 - time (sec): 10.01 - samples/sec: 3400.07 - lr: 0.000009 - momentum: 0.000000
2023-10-17 21:34:04,704 epoch 8 - iter 219/738 - loss 0.01630488 - time (sec): 15.21 - samples/sec: 3383.60 - lr: 0.000009 - momentum: 0.000000
2023-10-17 21:34:09,971 epoch 8 - iter 292/738 - loss 0.01761086 - time (sec): 20.48 - samples/sec: 3348.32 - lr: 0.000009 - momentum: 0.000000
2023-10-17 21:34:14,862 epoch 8 - iter 365/738 - loss 0.01660792 - time (sec): 25.37 - samples/sec: 3308.23 - lr: 0.000008 - momentum: 0.000000
2023-10-17 21:34:19,664 epoch 8 - iter 438/738 - loss 0.01520866 - time (sec): 30.17 - samples/sec: 3293.22 - lr: 0.000008 - momentum: 0.000000
2023-10-17 21:34:24,642 epoch 8 - iter 511/738 - loss 0.01405476 - time (sec): 35.15 - samples/sec: 3290.91 - lr: 0.000008 - momentum: 0.000000
2023-10-17 21:34:29,213 epoch 8 - iter 584/738 - loss 0.01480907 - time (sec): 39.72 - samples/sec: 3303.80 - lr: 0.000007 - momentum: 0.000000
2023-10-17 21:34:33,873 epoch 8 - iter 657/738 - loss 0.01466298 - time (sec): 44.38 - samples/sec: 3304.79 - lr: 0.000007 - momentum: 0.000000
2023-10-17 21:34:39,470 epoch 8 - iter 730/738 - loss 0.01428222 - time (sec): 49.98 - samples/sec: 3289.07 - lr: 0.000007 - momentum: 0.000000
2023-10-17 21:34:40,123 ----------------------------------------------------------------------------------------------------
2023-10-17 21:34:40,123 EPOCH 8 done: loss 0.0141 - lr: 0.000007
2023-10-17 21:34:51,322 DEV : loss 0.18850760161876678 - f1-score (micro avg)  0.8447
2023-10-17 21:34:51,355 ----------------------------------------------------------------------------------------------------
2023-10-17 21:34:56,327 epoch 9 - iter 73/738 - loss 0.00939305 - time (sec): 4.97 - samples/sec: 3353.78 - lr: 0.000006 - momentum: 0.000000
2023-10-17 21:35:01,986 epoch 9 - iter 146/738 - loss 0.00823870 - time (sec): 10.63 - samples/sec: 3284.37 - lr: 0.000006 - momentum: 0.000000
2023-10-17 21:35:07,616 epoch 9 - iter 219/738 - loss 0.00914707 - time (sec): 16.26 - samples/sec: 3291.38 - lr: 0.000006 - momentum: 0.000000
2023-10-17 21:35:12,908 epoch 9 - iter 292/738 - loss 0.00914178 - time (sec): 21.55 - samples/sec: 3324.64 - lr: 0.000005 - momentum: 0.000000
2023-10-17 21:35:17,828 epoch 9 - iter 365/738 - loss 0.00961735 - time (sec): 26.47 - samples/sec: 3320.82 - lr: 0.000005 - momentum: 0.000000
2023-10-17 21:35:22,462 epoch 9 - iter 438/738 - loss 0.01002769 - time (sec): 31.11 - samples/sec: 3325.10 - lr: 0.000005 - momentum: 0.000000
2023-10-17 21:35:27,590 epoch 9 - iter 511/738 - loss 0.01052868 - time (sec): 36.23 - samples/sec: 3303.82 - lr: 0.000004 - momentum: 0.000000
2023-10-17 21:35:32,468 epoch 9 - iter 584/738 - loss 0.01024063 - time (sec): 41.11 - samples/sec: 3277.99 - lr: 0.000004 - momentum: 0.000000
2023-10-17 21:35:37,124 epoch 9 - iter 657/738 - loss 0.01016591 - time (sec): 45.77 - samples/sec: 3273.54 - lr: 0.000004 - momentum: 0.000000
2023-10-17 21:35:41,638 epoch 9 - iter 730/738 - loss 0.00973227 - time (sec): 50.28 - samples/sec: 3279.12 - lr: 0.000003 - momentum: 0.000000
2023-10-17 21:35:42,121 ----------------------------------------------------------------------------------------------------
2023-10-17 21:35:42,122 EPOCH 9 done: loss 0.0096 - lr: 0.000003
2023-10-17 21:35:53,382 DEV : loss 0.19131025671958923 - f1-score (micro avg)  0.8526
2023-10-17 21:35:53,417 saving best model
2023-10-17 21:35:53,919 ----------------------------------------------------------------------------------------------------
2023-10-17 21:35:59,133 epoch 10 - iter 73/738 - loss 0.00368059 - time (sec): 5.21 - samples/sec: 3264.79 - lr: 0.000003 - momentum: 0.000000
2023-10-17 21:36:04,536 epoch 10 - iter 146/738 - loss 0.00688414 - time (sec): 10.61 - samples/sec: 3219.79 - lr: 0.000003 - momentum: 0.000000
2023-10-17 21:36:09,499 epoch 10 - iter 219/738 - loss 0.00600329 - time (sec): 15.58 - samples/sec: 3229.89 - lr: 0.000002 - momentum: 0.000000
2023-10-17 21:36:14,470 epoch 10 - iter 292/738 - loss 0.00593938 - time (sec): 20.55 - samples/sec: 3206.22 - lr: 0.000002 - momentum: 0.000000
2023-10-17 21:36:19,636 epoch 10 - iter 365/738 - loss 0.00609185 - time (sec): 25.71 - samples/sec: 3220.95 - lr: 0.000002 - momentum: 0.000000
2023-10-17 21:36:24,288 epoch 10 - iter 438/738 - loss 0.00665908 - time (sec): 30.36 - samples/sec: 3232.50 - lr: 0.000001 - momentum: 0.000000
2023-10-17 21:36:29,180 epoch 10 - iter 511/738 - loss 0.00605624 - time (sec): 35.26 - samples/sec: 3248.47 - lr: 0.000001 - momentum: 0.000000
2023-10-17 21:36:33,742 epoch 10 - iter 584/738 - loss 0.00606397 - time (sec): 39.82 - samples/sec: 3256.28 - lr: 0.000001 - momentum: 0.000000
2023-10-17 21:36:39,559 epoch 10 - iter 657/738 - loss 0.00643681 - time (sec): 45.64 - samples/sec: 3289.31 - lr: 0.000000 - momentum: 0.000000
2023-10-17 21:36:44,217 epoch 10 - iter 730/738 - loss 0.00772105 - time (sec): 50.29 - samples/sec: 3282.16 - lr: 0.000000 - momentum: 0.000000
2023-10-17 21:36:44,686 ----------------------------------------------------------------------------------------------------
2023-10-17 21:36:44,686 EPOCH 10 done: loss 0.0077 - lr: 0.000000
2023-10-17 21:36:56,957 DEV : loss 0.19779689610004425 - f1-score (micro avg)  0.8516
2023-10-17 21:36:57,390 ----------------------------------------------------------------------------------------------------
2023-10-17 21:36:57,391 Loading model from best epoch ...
2023-10-17 21:36:58,862 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-17 21:37:05,616 
Results:
- F-score (micro) 0.806
- F-score (macro) 0.7107
- Accuracy 0.694

By class:
              precision    recall  f1-score   support

         loc     0.8910    0.8671    0.8789       858
        pers     0.7539    0.8156    0.7835       537
         org     0.5473    0.6136    0.5786       132
        time     0.5556    0.6481    0.5983        54
        prod     0.7843    0.6557    0.7143        61

   micro avg     0.7974    0.8149    0.8060      1642
   macro avg     0.7064    0.7201    0.7107      1642
weighted avg     0.8035    0.8149    0.8082      1642

2023-10-17 21:37:05,616 ----------------------------------------------------------------------------------------------------