2023-10-17 21:26:40,875 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,876 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): ElectraModel( (embeddings): ElectraEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): ElectraEncoder( (layer): ModuleList( (0-11): 12 x ElectraLayer( (attention): ElectraAttention( (self): ElectraSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): ElectraSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): ElectraIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ElectraOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-17 21:26:40,876 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,876 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator 2023-10-17 21:26:40,876 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,876 Train: 5901 sentences 2023-10-17 21:26:40,876 (train_with_dev=False, train_with_test=False) 2023-10-17 21:26:40,876 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,876 Training Params: 2023-10-17 21:26:40,876 - learning_rate: "3e-05" 2023-10-17 21:26:40,876 - mini_batch_size: "8" 2023-10-17 21:26:40,876 - max_epochs: "10" 2023-10-17 21:26:40,876 - shuffle: "True" 2023-10-17 21:26:40,876 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,876 Plugins: 2023-10-17 21:26:40,877 - TensorboardLogger 2023-10-17 21:26:40,877 - LinearScheduler | warmup_fraction: '0.1' 2023-10-17 21:26:40,877 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,877 Final evaluation on model from best epoch (best-model.pt) 2023-10-17 21:26:40,877 - metric: "('micro avg', 'f1-score')" 2023-10-17 21:26:40,877 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,877 Computation: 2023-10-17 21:26:40,877 - compute on device: cuda:0 2023-10-17 21:26:40,877 - embedding storage: none 2023-10-17 21:26:40,877 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,877 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3" 2023-10-17 21:26:40,877 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,877 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:26:40,877 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-17 21:26:45,615 epoch 1 - iter 73/738 - loss 3.49952752 - time (sec): 4.74 - samples/sec: 3401.60 - lr: 0.000003 - momentum: 0.000000 2023-10-17 21:26:51,525 epoch 1 - iter 146/738 - loss 2.16207004 - time (sec): 10.65 - samples/sec: 3375.23 - lr: 0.000006 - momentum: 0.000000 2023-10-17 21:26:56,443 epoch 1 - iter 219/738 - loss 1.66274405 - time (sec): 15.56 - samples/sec: 3326.52 - lr: 0.000009 - momentum: 0.000000 2023-10-17 21:27:00,716 epoch 1 - iter 292/738 - loss 1.38721801 - time (sec): 19.84 - samples/sec: 3357.65 - lr: 0.000012 - momentum: 0.000000 2023-10-17 21:27:05,522 epoch 1 - iter 365/738 - loss 1.18355146 - time (sec): 24.64 - samples/sec: 3350.31 - lr: 0.000015 - momentum: 0.000000 2023-10-17 21:27:10,816 epoch 1 - iter 438/738 - loss 1.02870123 - time (sec): 29.94 - samples/sec: 3358.32 - lr: 0.000018 - momentum: 0.000000 2023-10-17 21:27:15,600 epoch 1 - iter 511/738 - loss 0.91506435 - time (sec): 34.72 - samples/sec: 3358.58 - lr: 0.000021 - momentum: 0.000000 2023-10-17 21:27:20,128 epoch 1 - iter 584/738 - loss 0.83281866 - time (sec): 39.25 - samples/sec: 3372.24 - lr: 0.000024 - momentum: 0.000000 2023-10-17 21:27:24,700 epoch 1 - iter 657/738 - loss 0.76709624 - time (sec): 43.82 - samples/sec: 3378.50 - lr: 0.000027 - momentum: 0.000000 2023-10-17 21:27:29,463 epoch 1 - iter 730/738 - loss 0.70974504 - time (sec): 48.59 - samples/sec: 3382.19 - lr: 0.000030 - momentum: 0.000000 2023-10-17 21:27:29,971 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:27:29,972 EPOCH 1 done: loss 0.7025 - lr: 0.000030 2023-10-17 21:27:35,758 DEV : loss 0.11762610077857971 - f1-score (micro avg) 0.7482 2023-10-17 21:27:35,791 saving best model 2023-10-17 21:27:36,662 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:27:41,652 epoch 2 - iter 73/738 - loss 0.14984083 - time (sec): 4.99 - samples/sec: 3222.14 - lr: 0.000030 - momentum: 0.000000 2023-10-17 21:27:46,811 epoch 2 - iter 146/738 - loss 0.15409294 - time (sec): 10.15 - samples/sec: 3379.77 - lr: 0.000029 - momentum: 0.000000 2023-10-17 21:27:51,908 epoch 2 - iter 219/738 - loss 0.14322277 - time (sec): 15.24 - samples/sec: 3332.70 - lr: 0.000029 - momentum: 0.000000 2023-10-17 21:27:56,414 epoch 2 - iter 292/738 - loss 0.13804033 - time (sec): 19.75 - samples/sec: 3368.52 - lr: 0.000029 - momentum: 0.000000 2023-10-17 21:28:01,318 epoch 2 - iter 365/738 - loss 0.13219670 - time (sec): 24.65 - samples/sec: 3397.53 - lr: 0.000028 - momentum: 0.000000 2023-10-17 21:28:06,597 epoch 2 - iter 438/738 - loss 0.13134819 - time (sec): 29.93 - samples/sec: 3363.86 - lr: 0.000028 - momentum: 0.000000 2023-10-17 21:28:11,528 epoch 2 - iter 511/738 - loss 0.12866441 - time (sec): 34.86 - samples/sec: 3359.08 - lr: 0.000028 - momentum: 0.000000 2023-10-17 21:28:16,885 epoch 2 - iter 584/738 - loss 0.12449709 - time (sec): 40.22 - samples/sec: 3326.61 - lr: 0.000027 - momentum: 0.000000 2023-10-17 21:28:21,525 epoch 2 - iter 657/738 - loss 0.12254254 - time (sec): 44.86 - samples/sec: 3341.34 - lr: 0.000027 - momentum: 0.000000 2023-10-17 21:28:26,153 epoch 2 - iter 730/738 - loss 0.12293368 - time (sec): 49.49 - samples/sec: 3330.98 - lr: 0.000027 - momentum: 0.000000 2023-10-17 21:28:26,639 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:28:26,639 EPOCH 2 done: loss 0.1226 - lr: 0.000027 2023-10-17 21:28:37,830 DEV : loss 0.08953238278627396 - f1-score (micro avg) 0.8325 2023-10-17 21:28:37,863 saving best model 2023-10-17 21:28:38,345 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:28:43,166 epoch 3 - iter 73/738 - loss 0.06498284 - time (sec): 4.82 - samples/sec: 3316.94 - lr: 0.000026 - momentum: 0.000000 2023-10-17 21:28:48,268 epoch 3 - iter 146/738 - loss 0.07253182 - time (sec): 9.92 - samples/sec: 3292.11 - lr: 0.000026 - momentum: 0.000000 2023-10-17 21:28:53,207 epoch 3 - iter 219/738 - loss 0.07369571 - time (sec): 14.86 - samples/sec: 3307.50 - lr: 0.000026 - momentum: 0.000000 2023-10-17 21:28:58,390 epoch 3 - iter 292/738 - loss 0.07104734 - time (sec): 20.04 - samples/sec: 3291.04 - lr: 0.000025 - momentum: 0.000000 2023-10-17 21:29:03,747 epoch 3 - iter 365/738 - loss 0.07010578 - time (sec): 25.40 - samples/sec: 3289.69 - lr: 0.000025 - momentum: 0.000000 2023-10-17 21:29:08,795 epoch 3 - iter 438/738 - loss 0.07173198 - time (sec): 30.44 - samples/sec: 3280.44 - lr: 0.000025 - momentum: 0.000000 2023-10-17 21:29:13,423 epoch 3 - iter 511/738 - loss 0.07041391 - time (sec): 35.07 - samples/sec: 3281.82 - lr: 0.000024 - momentum: 0.000000 2023-10-17 21:29:18,816 epoch 3 - iter 584/738 - loss 0.06977851 - time (sec): 40.47 - samples/sec: 3282.39 - lr: 0.000024 - momentum: 0.000000 2023-10-17 21:29:23,695 epoch 3 - iter 657/738 - loss 0.06917953 - time (sec): 45.34 - samples/sec: 3292.70 - lr: 0.000024 - momentum: 0.000000 2023-10-17 21:29:28,226 epoch 3 - iter 730/738 - loss 0.07009721 - time (sec): 49.87 - samples/sec: 3304.46 - lr: 0.000023 - momentum: 0.000000 2023-10-17 21:29:28,708 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:29:28,709 EPOCH 3 done: loss 0.0701 - lr: 0.000023 2023-10-17 21:29:40,107 DEV : loss 0.1102706640958786 - f1-score (micro avg) 0.8405 2023-10-17 21:29:40,146 saving best model 2023-10-17 21:29:40,654 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:29:45,608 epoch 4 - iter 73/738 - loss 0.02968515 - time (sec): 4.95 - samples/sec: 3166.16 - lr: 0.000023 - momentum: 0.000000 2023-10-17 21:29:50,421 epoch 4 - iter 146/738 - loss 0.03527936 - time (sec): 9.76 - samples/sec: 3318.65 - lr: 0.000023 - momentum: 0.000000 2023-10-17 21:29:55,855 epoch 4 - iter 219/738 - loss 0.03661792 - time (sec): 15.20 - samples/sec: 3291.89 - lr: 0.000022 - momentum: 0.000000 2023-10-17 21:30:00,595 epoch 4 - iter 292/738 - loss 0.04111833 - time (sec): 19.94 - samples/sec: 3293.63 - lr: 0.000022 - momentum: 0.000000 2023-10-17 21:30:04,902 epoch 4 - iter 365/738 - loss 0.04094378 - time (sec): 24.25 - samples/sec: 3299.44 - lr: 0.000022 - momentum: 0.000000 2023-10-17 21:30:09,927 epoch 4 - iter 438/738 - loss 0.04325232 - time (sec): 29.27 - samples/sec: 3265.15 - lr: 0.000021 - momentum: 0.000000 2023-10-17 21:30:15,565 epoch 4 - iter 511/738 - loss 0.04681831 - time (sec): 34.91 - samples/sec: 3290.65 - lr: 0.000021 - momentum: 0.000000 2023-10-17 21:30:20,255 epoch 4 - iter 584/738 - loss 0.04786698 - time (sec): 39.60 - samples/sec: 3290.40 - lr: 0.000021 - momentum: 0.000000 2023-10-17 21:30:25,799 epoch 4 - iter 657/738 - loss 0.04774352 - time (sec): 45.14 - samples/sec: 3279.63 - lr: 0.000020 - momentum: 0.000000 2023-10-17 21:30:30,533 epoch 4 - iter 730/738 - loss 0.04825194 - time (sec): 49.88 - samples/sec: 3292.97 - lr: 0.000020 - momentum: 0.000000 2023-10-17 21:30:31,199 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:30:31,199 EPOCH 4 done: loss 0.0483 - lr: 0.000020 2023-10-17 21:30:42,413 DEV : loss 0.1353892683982849 - f1-score (micro avg) 0.8416 2023-10-17 21:30:42,446 saving best model 2023-10-17 21:30:42,928 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:30:47,459 epoch 5 - iter 73/738 - loss 0.03440303 - time (sec): 4.53 - samples/sec: 3382.11 - lr: 0.000020 - momentum: 0.000000 2023-10-17 21:30:52,224 epoch 5 - iter 146/738 - loss 0.03591970 - time (sec): 9.29 - samples/sec: 3346.20 - lr: 0.000019 - momentum: 0.000000 2023-10-17 21:30:57,359 epoch 5 - iter 219/738 - loss 0.03487105 - time (sec): 14.43 - samples/sec: 3341.94 - lr: 0.000019 - momentum: 0.000000 2023-10-17 21:31:02,051 epoch 5 - iter 292/738 - loss 0.03396132 - time (sec): 19.12 - samples/sec: 3302.02 - lr: 0.000019 - momentum: 0.000000 2023-10-17 21:31:07,353 epoch 5 - iter 365/738 - loss 0.03575017 - time (sec): 24.42 - samples/sec: 3292.46 - lr: 0.000018 - momentum: 0.000000 2023-10-17 21:31:13,225 epoch 5 - iter 438/738 - loss 0.03630382 - time (sec): 30.29 - samples/sec: 3317.94 - lr: 0.000018 - momentum: 0.000000 2023-10-17 21:31:17,948 epoch 5 - iter 511/738 - loss 0.03628542 - time (sec): 35.02 - samples/sec: 3306.47 - lr: 0.000018 - momentum: 0.000000 2023-10-17 21:31:22,791 epoch 5 - iter 584/738 - loss 0.03570918 - time (sec): 39.86 - samples/sec: 3311.13 - lr: 0.000017 - momentum: 0.000000 2023-10-17 21:31:27,930 epoch 5 - iter 657/738 - loss 0.03596680 - time (sec): 45.00 - samples/sec: 3295.33 - lr: 0.000017 - momentum: 0.000000 2023-10-17 21:31:32,885 epoch 5 - iter 730/738 - loss 0.03568567 - time (sec): 49.95 - samples/sec: 3298.95 - lr: 0.000017 - momentum: 0.000000 2023-10-17 21:31:33,323 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:31:33,323 EPOCH 5 done: loss 0.0355 - lr: 0.000017 2023-10-17 21:31:44,632 DEV : loss 0.14825424551963806 - f1-score (micro avg) 0.8515 2023-10-17 21:31:44,669 saving best model 2023-10-17 21:31:45,155 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:31:50,379 epoch 6 - iter 73/738 - loss 0.01815114 - time (sec): 5.22 - samples/sec: 3277.80 - lr: 0.000016 - momentum: 0.000000 2023-10-17 21:31:54,804 epoch 6 - iter 146/738 - loss 0.02485180 - time (sec): 9.64 - samples/sec: 3307.68 - lr: 0.000016 - momentum: 0.000000 2023-10-17 21:32:00,352 epoch 6 - iter 219/738 - loss 0.02316966 - time (sec): 15.19 - samples/sec: 3156.11 - lr: 0.000016 - momentum: 0.000000 2023-10-17 21:32:05,025 epoch 6 - iter 292/738 - loss 0.02044324 - time (sec): 19.87 - samples/sec: 3184.54 - lr: 0.000015 - momentum: 0.000000 2023-10-17 21:32:09,801 epoch 6 - iter 365/738 - loss 0.01978515 - time (sec): 24.64 - samples/sec: 3225.44 - lr: 0.000015 - momentum: 0.000000 2023-10-17 21:32:15,135 epoch 6 - iter 438/738 - loss 0.02024243 - time (sec): 29.98 - samples/sec: 3213.94 - lr: 0.000015 - momentum: 0.000000 2023-10-17 21:32:20,409 epoch 6 - iter 511/738 - loss 0.02251455 - time (sec): 35.25 - samples/sec: 3211.11 - lr: 0.000014 - momentum: 0.000000 2023-10-17 21:32:25,237 epoch 6 - iter 584/738 - loss 0.02378898 - time (sec): 40.08 - samples/sec: 3234.89 - lr: 0.000014 - momentum: 0.000000 2023-10-17 21:32:30,304 epoch 6 - iter 657/738 - loss 0.02399881 - time (sec): 45.14 - samples/sec: 3248.20 - lr: 0.000014 - momentum: 0.000000 2023-10-17 21:32:35,259 epoch 6 - iter 730/738 - loss 0.02430477 - time (sec): 50.10 - samples/sec: 3248.64 - lr: 0.000013 - momentum: 0.000000 2023-10-17 21:32:36,208 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:32:36,208 EPOCH 6 done: loss 0.0249 - lr: 0.000013 2023-10-17 21:32:47,447 DEV : loss 0.15200623869895935 - f1-score (micro avg) 0.8486 2023-10-17 21:32:47,479 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:32:52,519 epoch 7 - iter 73/738 - loss 0.02120244 - time (sec): 5.04 - samples/sec: 3271.07 - lr: 0.000013 - momentum: 0.000000 2023-10-17 21:32:57,621 epoch 7 - iter 146/738 - loss 0.01625364 - time (sec): 10.14 - samples/sec: 3284.37 - lr: 0.000013 - momentum: 0.000000 2023-10-17 21:33:02,523 epoch 7 - iter 219/738 - loss 0.01923714 - time (sec): 15.04 - samples/sec: 3233.79 - lr: 0.000012 - momentum: 0.000000 2023-10-17 21:33:07,707 epoch 7 - iter 292/738 - loss 0.01798684 - time (sec): 20.23 - samples/sec: 3282.97 - lr: 0.000012 - momentum: 0.000000 2023-10-17 21:33:12,635 epoch 7 - iter 365/738 - loss 0.01737053 - time (sec): 25.15 - samples/sec: 3289.30 - lr: 0.000012 - momentum: 0.000000 2023-10-17 21:33:17,385 epoch 7 - iter 438/738 - loss 0.01786620 - time (sec): 29.91 - samples/sec: 3292.00 - lr: 0.000011 - momentum: 0.000000 2023-10-17 21:33:22,339 epoch 7 - iter 511/738 - loss 0.01716618 - time (sec): 34.86 - samples/sec: 3311.50 - lr: 0.000011 - momentum: 0.000000 2023-10-17 21:33:27,483 epoch 7 - iter 584/738 - loss 0.01905246 - time (sec): 40.00 - samples/sec: 3293.23 - lr: 0.000011 - momentum: 0.000000 2023-10-17 21:33:32,841 epoch 7 - iter 657/738 - loss 0.01919180 - time (sec): 45.36 - samples/sec: 3291.41 - lr: 0.000010 - momentum: 0.000000 2023-10-17 21:33:37,560 epoch 7 - iter 730/738 - loss 0.01935287 - time (sec): 50.08 - samples/sec: 3281.30 - lr: 0.000010 - momentum: 0.000000 2023-10-17 21:33:38,229 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:33:38,229 EPOCH 7 done: loss 0.0192 - lr: 0.000010 2023-10-17 21:33:49,459 DEV : loss 0.18122123181819916 - f1-score (micro avg) 0.8484 2023-10-17 21:33:49,490 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:33:54,535 epoch 8 - iter 73/738 - loss 0.01103084 - time (sec): 5.04 - samples/sec: 3291.02 - lr: 0.000010 - momentum: 0.000000 2023-10-17 21:33:59,503 epoch 8 - iter 146/738 - loss 0.01060912 - time (sec): 10.01 - samples/sec: 3400.07 - lr: 0.000009 - momentum: 0.000000 2023-10-17 21:34:04,704 epoch 8 - iter 219/738 - loss 0.01630488 - time (sec): 15.21 - samples/sec: 3383.60 - lr: 0.000009 - momentum: 0.000000 2023-10-17 21:34:09,971 epoch 8 - iter 292/738 - loss 0.01761086 - time (sec): 20.48 - samples/sec: 3348.32 - lr: 0.000009 - momentum: 0.000000 2023-10-17 21:34:14,862 epoch 8 - iter 365/738 - loss 0.01660792 - time (sec): 25.37 - samples/sec: 3308.23 - lr: 0.000008 - momentum: 0.000000 2023-10-17 21:34:19,664 epoch 8 - iter 438/738 - loss 0.01520866 - time (sec): 30.17 - samples/sec: 3293.22 - lr: 0.000008 - momentum: 0.000000 2023-10-17 21:34:24,642 epoch 8 - iter 511/738 - loss 0.01405476 - time (sec): 35.15 - samples/sec: 3290.91 - lr: 0.000008 - momentum: 0.000000 2023-10-17 21:34:29,213 epoch 8 - iter 584/738 - loss 0.01480907 - time (sec): 39.72 - samples/sec: 3303.80 - lr: 0.000007 - momentum: 0.000000 2023-10-17 21:34:33,873 epoch 8 - iter 657/738 - loss 0.01466298 - time (sec): 44.38 - samples/sec: 3304.79 - lr: 0.000007 - momentum: 0.000000 2023-10-17 21:34:39,470 epoch 8 - iter 730/738 - loss 0.01428222 - time (sec): 49.98 - samples/sec: 3289.07 - lr: 0.000007 - momentum: 0.000000 2023-10-17 21:34:40,123 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:34:40,123 EPOCH 8 done: loss 0.0141 - lr: 0.000007 2023-10-17 21:34:51,322 DEV : loss 0.18850760161876678 - f1-score (micro avg) 0.8447 2023-10-17 21:34:51,355 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:34:56,327 epoch 9 - iter 73/738 - loss 0.00939305 - time (sec): 4.97 - samples/sec: 3353.78 - lr: 0.000006 - momentum: 0.000000 2023-10-17 21:35:01,986 epoch 9 - iter 146/738 - loss 0.00823870 - time (sec): 10.63 - samples/sec: 3284.37 - lr: 0.000006 - momentum: 0.000000 2023-10-17 21:35:07,616 epoch 9 - iter 219/738 - loss 0.00914707 - time (sec): 16.26 - samples/sec: 3291.38 - lr: 0.000006 - momentum: 0.000000 2023-10-17 21:35:12,908 epoch 9 - iter 292/738 - loss 0.00914178 - time (sec): 21.55 - samples/sec: 3324.64 - lr: 0.000005 - momentum: 0.000000 2023-10-17 21:35:17,828 epoch 9 - iter 365/738 - loss 0.00961735 - time (sec): 26.47 - samples/sec: 3320.82 - lr: 0.000005 - momentum: 0.000000 2023-10-17 21:35:22,462 epoch 9 - iter 438/738 - loss 0.01002769 - time (sec): 31.11 - samples/sec: 3325.10 - lr: 0.000005 - momentum: 0.000000 2023-10-17 21:35:27,590 epoch 9 - iter 511/738 - loss 0.01052868 - time (sec): 36.23 - samples/sec: 3303.82 - lr: 0.000004 - momentum: 0.000000 2023-10-17 21:35:32,468 epoch 9 - iter 584/738 - loss 0.01024063 - time (sec): 41.11 - samples/sec: 3277.99 - lr: 0.000004 - momentum: 0.000000 2023-10-17 21:35:37,124 epoch 9 - iter 657/738 - loss 0.01016591 - time (sec): 45.77 - samples/sec: 3273.54 - lr: 0.000004 - momentum: 0.000000 2023-10-17 21:35:41,638 epoch 9 - iter 730/738 - loss 0.00973227 - time (sec): 50.28 - samples/sec: 3279.12 - lr: 0.000003 - momentum: 0.000000 2023-10-17 21:35:42,121 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:35:42,122 EPOCH 9 done: loss 0.0096 - lr: 0.000003 2023-10-17 21:35:53,382 DEV : loss 0.19131025671958923 - f1-score (micro avg) 0.8526 2023-10-17 21:35:53,417 saving best model 2023-10-17 21:35:53,919 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:35:59,133 epoch 10 - iter 73/738 - loss 0.00368059 - time (sec): 5.21 - samples/sec: 3264.79 - lr: 0.000003 - momentum: 0.000000 2023-10-17 21:36:04,536 epoch 10 - iter 146/738 - loss 0.00688414 - time (sec): 10.61 - samples/sec: 3219.79 - lr: 0.000003 - momentum: 0.000000 2023-10-17 21:36:09,499 epoch 10 - iter 219/738 - loss 0.00600329 - time (sec): 15.58 - samples/sec: 3229.89 - lr: 0.000002 - momentum: 0.000000 2023-10-17 21:36:14,470 epoch 10 - iter 292/738 - loss 0.00593938 - time (sec): 20.55 - samples/sec: 3206.22 - lr: 0.000002 - momentum: 0.000000 2023-10-17 21:36:19,636 epoch 10 - iter 365/738 - loss 0.00609185 - time (sec): 25.71 - samples/sec: 3220.95 - lr: 0.000002 - momentum: 0.000000 2023-10-17 21:36:24,288 epoch 10 - iter 438/738 - loss 0.00665908 - time (sec): 30.36 - samples/sec: 3232.50 - lr: 0.000001 - momentum: 0.000000 2023-10-17 21:36:29,180 epoch 10 - iter 511/738 - loss 0.00605624 - time (sec): 35.26 - samples/sec: 3248.47 - lr: 0.000001 - momentum: 0.000000 2023-10-17 21:36:33,742 epoch 10 - iter 584/738 - loss 0.00606397 - time (sec): 39.82 - samples/sec: 3256.28 - lr: 0.000001 - momentum: 0.000000 2023-10-17 21:36:39,559 epoch 10 - iter 657/738 - loss 0.00643681 - time (sec): 45.64 - samples/sec: 3289.31 - lr: 0.000000 - momentum: 0.000000 2023-10-17 21:36:44,217 epoch 10 - iter 730/738 - loss 0.00772105 - time (sec): 50.29 - samples/sec: 3282.16 - lr: 0.000000 - momentum: 0.000000 2023-10-17 21:36:44,686 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:36:44,686 EPOCH 10 done: loss 0.0077 - lr: 0.000000 2023-10-17 21:36:56,957 DEV : loss 0.19779689610004425 - f1-score (micro avg) 0.8516 2023-10-17 21:36:57,390 ---------------------------------------------------------------------------------------------------- 2023-10-17 21:36:57,391 Loading model from best epoch ... 2023-10-17 21:36:58,862 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod 2023-10-17 21:37:05,616 Results: - F-score (micro) 0.806 - F-score (macro) 0.7107 - Accuracy 0.694 By class: precision recall f1-score support loc 0.8910 0.8671 0.8789 858 pers 0.7539 0.8156 0.7835 537 org 0.5473 0.6136 0.5786 132 time 0.5556 0.6481 0.5983 54 prod 0.7843 0.6557 0.7143 61 micro avg 0.7974 0.8149 0.8060 1642 macro avg 0.7064 0.7201 0.7107 1642 weighted avg 0.8035 0.8149 0.8082 1642 2023-10-17 21:37:05,616 ----------------------------------------------------------------------------------------------------