Upload ./training.log with huggingface_hub
Browse files- training.log +505 -0
training.log
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 15:13:44,762 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 15:13:44,763 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 15:13:44,763 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 15:13:44,763 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
|
317 |
+
2023-10-24 15:13:44,763 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 15:13:44,763 Train: 7936 sentences
|
319 |
+
2023-10-24 15:13:44,763 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 15:13:44,764 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 15:13:44,764 Training Params:
|
322 |
+
2023-10-24 15:13:44,764 - learning_rate: "3e-05"
|
323 |
+
2023-10-24 15:13:44,764 - mini_batch_size: "8"
|
324 |
+
2023-10-24 15:13:44,764 - max_epochs: "10"
|
325 |
+
2023-10-24 15:13:44,764 - shuffle: "True"
|
326 |
+
2023-10-24 15:13:44,764 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 15:13:44,764 Plugins:
|
328 |
+
2023-10-24 15:13:44,764 - TensorboardLogger
|
329 |
+
2023-10-24 15:13:44,764 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 15:13:44,764 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 15:13:44,764 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 15:13:44,764 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 15:13:44,764 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 15:13:44,764 Computation:
|
335 |
+
2023-10-24 15:13:44,764 - compute on device: cuda:0
|
336 |
+
2023-10-24 15:13:44,764 - embedding storage: none
|
337 |
+
2023-10-24 15:13:44,764 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 15:13:44,764 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
339 |
+
2023-10-24 15:13:44,764 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 15:13:44,764 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 15:13:44,764 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 15:13:52,870 epoch 1 - iter 99/992 - loss 2.00138499 - time (sec): 8.11 - samples/sec: 1940.03 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-24 15:14:00,756 epoch 1 - iter 198/992 - loss 1.19486555 - time (sec): 15.99 - samples/sec: 1939.90 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-24 15:14:08,909 epoch 1 - iter 297/992 - loss 0.87346403 - time (sec): 24.14 - samples/sec: 1963.76 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-24 15:14:17,064 epoch 1 - iter 396/992 - loss 0.69769156 - time (sec): 32.30 - samples/sec: 1961.48 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-24 15:14:25,604 epoch 1 - iter 495/992 - loss 0.58166806 - time (sec): 40.84 - samples/sec: 1973.97 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-24 15:14:33,994 epoch 1 - iter 594/992 - loss 0.50752231 - time (sec): 49.23 - samples/sec: 1971.55 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-24 15:14:42,580 epoch 1 - iter 693/992 - loss 0.45336096 - time (sec): 57.82 - samples/sec: 1963.72 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-24 15:14:51,243 epoch 1 - iter 792/992 - loss 0.41245068 - time (sec): 66.48 - samples/sec: 1965.17 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-24 15:14:59,630 epoch 1 - iter 891/992 - loss 0.38042237 - time (sec): 74.87 - samples/sec: 1966.67 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-24 15:15:07,967 epoch 1 - iter 990/992 - loss 0.35462009 - time (sec): 83.20 - samples/sec: 1967.35 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-24 15:15:08,132 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 15:15:08,132 EPOCH 1 done: loss 0.3542 - lr: 0.000030
|
354 |
+
2023-10-24 15:15:11,185 DEV : loss 0.0961548462510109 - f1-score (micro avg) 0.7105
|
355 |
+
2023-10-24 15:15:11,200 saving best model
|
356 |
+
2023-10-24 15:15:11,755 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 15:15:20,111 epoch 2 - iter 99/992 - loss 0.11640822 - time (sec): 8.35 - samples/sec: 2042.78 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-24 15:15:28,447 epoch 2 - iter 198/992 - loss 0.11616878 - time (sec): 16.69 - samples/sec: 2002.25 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-24 15:15:37,122 epoch 2 - iter 297/992 - loss 0.11115161 - time (sec): 25.37 - samples/sec: 2003.37 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-24 15:15:45,186 epoch 2 - iter 396/992 - loss 0.10710185 - time (sec): 33.43 - samples/sec: 2000.29 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-24 15:15:53,527 epoch 2 - iter 495/992 - loss 0.10512998 - time (sec): 41.77 - samples/sec: 1994.14 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-24 15:16:01,850 epoch 2 - iter 594/992 - loss 0.10552659 - time (sec): 50.09 - samples/sec: 1965.95 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-24 15:16:09,917 epoch 2 - iter 693/992 - loss 0.10493309 - time (sec): 58.16 - samples/sec: 1962.81 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-24 15:16:18,183 epoch 2 - iter 792/992 - loss 0.10434383 - time (sec): 66.43 - samples/sec: 1962.00 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-24 15:16:26,821 epoch 2 - iter 891/992 - loss 0.10270095 - time (sec): 75.07 - samples/sec: 1961.30 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-24 15:16:35,036 epoch 2 - iter 990/992 - loss 0.10121394 - time (sec): 83.28 - samples/sec: 1965.27 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-24 15:16:35,186 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 15:16:35,186 EPOCH 2 done: loss 0.1011 - lr: 0.000027
|
369 |
+
2023-10-24 15:16:38,599 DEV : loss 0.09430491924285889 - f1-score (micro avg) 0.7529
|
370 |
+
2023-10-24 15:16:38,614 saving best model
|
371 |
+
2023-10-24 15:16:39,338 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 15:16:47,529 epoch 3 - iter 99/992 - loss 0.06719236 - time (sec): 8.19 - samples/sec: 1940.21 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-24 15:16:55,855 epoch 3 - iter 198/992 - loss 0.06613133 - time (sec): 16.52 - samples/sec: 1993.65 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-24 15:17:04,381 epoch 3 - iter 297/992 - loss 0.06330398 - time (sec): 25.04 - samples/sec: 1985.65 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-24 15:17:12,671 epoch 3 - iter 396/992 - loss 0.06632455 - time (sec): 33.33 - samples/sec: 1960.17 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-24 15:17:20,731 epoch 3 - iter 495/992 - loss 0.07066014 - time (sec): 41.39 - samples/sec: 1959.36 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-24 15:17:29,327 epoch 3 - iter 594/992 - loss 0.07098366 - time (sec): 49.99 - samples/sec: 1951.79 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-24 15:17:37,244 epoch 3 - iter 693/992 - loss 0.07039656 - time (sec): 57.91 - samples/sec: 1953.94 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-24 15:17:45,665 epoch 3 - iter 792/992 - loss 0.06956794 - time (sec): 66.33 - samples/sec: 1960.93 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-24 15:17:53,989 epoch 3 - iter 891/992 - loss 0.06922567 - time (sec): 74.65 - samples/sec: 1958.25 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-24 15:18:02,727 epoch 3 - iter 990/992 - loss 0.06916264 - time (sec): 83.39 - samples/sec: 1961.66 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-24 15:18:02,917 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 15:18:02,917 EPOCH 3 done: loss 0.0693 - lr: 0.000023
|
384 |
+
2023-10-24 15:18:06,033 DEV : loss 0.0983629822731018 - f1-score (micro avg) 0.7488
|
385 |
+
2023-10-24 15:18:06,049 ----------------------------------------------------------------------------------------------------
|
386 |
+
2023-10-24 15:18:14,336 epoch 4 - iter 99/992 - loss 0.04434730 - time (sec): 8.29 - samples/sec: 2012.20 - lr: 0.000023 - momentum: 0.000000
|
387 |
+
2023-10-24 15:18:22,782 epoch 4 - iter 198/992 - loss 0.04085860 - time (sec): 16.73 - samples/sec: 1966.74 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-24 15:18:30,640 epoch 4 - iter 297/992 - loss 0.04207446 - time (sec): 24.59 - samples/sec: 1954.17 - lr: 0.000022 - momentum: 0.000000
|
389 |
+
2023-10-24 15:18:38,789 epoch 4 - iter 396/992 - loss 0.04681766 - time (sec): 32.74 - samples/sec: 1963.82 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-24 15:18:47,334 epoch 4 - iter 495/992 - loss 0.04857690 - time (sec): 41.29 - samples/sec: 1962.60 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-24 15:18:56,652 epoch 4 - iter 594/992 - loss 0.04806280 - time (sec): 50.60 - samples/sec: 1963.48 - lr: 0.000021 - momentum: 0.000000
|
392 |
+
2023-10-24 15:19:04,615 epoch 4 - iter 693/992 - loss 0.04657590 - time (sec): 58.57 - samples/sec: 1966.76 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-24 15:19:13,077 epoch 4 - iter 792/992 - loss 0.04774712 - time (sec): 67.03 - samples/sec: 1966.19 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-24 15:19:21,518 epoch 4 - iter 891/992 - loss 0.04815205 - time (sec): 75.47 - samples/sec: 1961.15 - lr: 0.000020 - momentum: 0.000000
|
395 |
+
2023-10-24 15:19:30,005 epoch 4 - iter 990/992 - loss 0.04916499 - time (sec): 83.96 - samples/sec: 1950.19 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-24 15:19:30,145 ----------------------------------------------------------------------------------------------------
|
397 |
+
2023-10-24 15:19:30,145 EPOCH 4 done: loss 0.0492 - lr: 0.000020
|
398 |
+
2023-10-24 15:19:33,266 DEV : loss 0.1186017319560051 - f1-score (micro avg) 0.766
|
399 |
+
2023-10-24 15:19:33,282 saving best model
|
400 |
+
2023-10-24 15:19:34,070 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-24 15:19:42,709 epoch 5 - iter 99/992 - loss 0.03958303 - time (sec): 8.64 - samples/sec: 1954.98 - lr: 0.000020 - momentum: 0.000000
|
402 |
+
2023-10-24 15:19:50,877 epoch 5 - iter 198/992 - loss 0.03820388 - time (sec): 16.81 - samples/sec: 1956.19 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-24 15:19:58,957 epoch 5 - iter 297/992 - loss 0.03759095 - time (sec): 24.89 - samples/sec: 1960.58 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-24 15:20:07,566 epoch 5 - iter 396/992 - loss 0.03671709 - time (sec): 33.49 - samples/sec: 1974.70 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-24 15:20:15,557 epoch 5 - iter 495/992 - loss 0.03795644 - time (sec): 41.49 - samples/sec: 1963.89 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-24 15:20:23,714 epoch 5 - iter 594/992 - loss 0.03754771 - time (sec): 49.64 - samples/sec: 1968.60 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-24 15:20:31,990 epoch 5 - iter 693/992 - loss 0.03701700 - time (sec): 57.92 - samples/sec: 1972.23 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-24 15:20:40,475 epoch 5 - iter 792/992 - loss 0.03754511 - time (sec): 66.40 - samples/sec: 1975.22 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-24 15:20:49,092 epoch 5 - iter 891/992 - loss 0.03754814 - time (sec): 75.02 - samples/sec: 1974.28 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-24 15:20:57,344 epoch 5 - iter 990/992 - loss 0.03819911 - time (sec): 83.27 - samples/sec: 1966.82 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-24 15:20:57,489 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-24 15:20:57,489 EPOCH 5 done: loss 0.0382 - lr: 0.000017
|
413 |
+
2023-10-24 15:21:00,612 DEV : loss 0.1500038057565689 - f1-score (micro avg) 0.7716
|
414 |
+
2023-10-24 15:21:00,627 saving best model
|
415 |
+
2023-10-24 15:21:01,415 ----------------------------------------------------------------------------------------------------
|
416 |
+
2023-10-24 15:21:09,674 epoch 6 - iter 99/992 - loss 0.02489554 - time (sec): 8.26 - samples/sec: 1944.65 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-24 15:21:17,831 epoch 6 - iter 198/992 - loss 0.02197168 - time (sec): 16.41 - samples/sec: 1969.28 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-24 15:21:26,440 epoch 6 - iter 297/992 - loss 0.02602124 - time (sec): 25.02 - samples/sec: 1970.79 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-24 15:21:34,700 epoch 6 - iter 396/992 - loss 0.02465442 - time (sec): 33.28 - samples/sec: 1958.95 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-24 15:21:43,130 epoch 6 - iter 495/992 - loss 0.02716845 - time (sec): 41.71 - samples/sec: 1975.40 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-24 15:21:51,299 epoch 6 - iter 594/992 - loss 0.02699725 - time (sec): 49.88 - samples/sec: 1977.15 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-24 15:21:59,606 epoch 6 - iter 693/992 - loss 0.02655613 - time (sec): 58.19 - samples/sec: 1976.09 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-24 15:22:07,766 epoch 6 - iter 792/992 - loss 0.02626525 - time (sec): 66.35 - samples/sec: 1973.44 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-24 15:22:16,581 epoch 6 - iter 891/992 - loss 0.02664702 - time (sec): 75.16 - samples/sec: 1956.18 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-24 15:22:25,007 epoch 6 - iter 990/992 - loss 0.02687875 - time (sec): 83.59 - samples/sec: 1959.53 - lr: 0.000013 - momentum: 0.000000
|
426 |
+
2023-10-24 15:22:25,140 ----------------------------------------------------------------------------------------------------
|
427 |
+
2023-10-24 15:22:25,140 EPOCH 6 done: loss 0.0269 - lr: 0.000013
|
428 |
+
2023-10-24 15:22:28,260 DEV : loss 0.18365593254566193 - f1-score (micro avg) 0.7675
|
429 |
+
2023-10-24 15:22:28,275 ----------------------------------------------------------------------------------------------------
|
430 |
+
2023-10-24 15:22:36,688 epoch 7 - iter 99/992 - loss 0.01924589 - time (sec): 8.41 - samples/sec: 2023.57 - lr: 0.000013 - momentum: 0.000000
|
431 |
+
2023-10-24 15:22:44,992 epoch 7 - iter 198/992 - loss 0.02187669 - time (sec): 16.72 - samples/sec: 1959.39 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-24 15:22:53,153 epoch 7 - iter 297/992 - loss 0.02145695 - time (sec): 24.88 - samples/sec: 1936.89 - lr: 0.000012 - momentum: 0.000000
|
433 |
+
2023-10-24 15:23:01,187 epoch 7 - iter 396/992 - loss 0.02078135 - time (sec): 32.91 - samples/sec: 1940.16 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-24 15:23:09,352 epoch 7 - iter 495/992 - loss 0.02110910 - time (sec): 41.08 - samples/sec: 1929.42 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-24 15:23:17,649 epoch 7 - iter 594/992 - loss 0.02248657 - time (sec): 49.37 - samples/sec: 1948.38 - lr: 0.000011 - momentum: 0.000000
|
436 |
+
2023-10-24 15:23:25,983 epoch 7 - iter 693/992 - loss 0.02223240 - time (sec): 57.71 - samples/sec: 1951.52 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-24 15:23:34,185 epoch 7 - iter 792/992 - loss 0.02177442 - time (sec): 65.91 - samples/sec: 1949.07 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-24 15:23:43,231 epoch 7 - iter 891/992 - loss 0.02152618 - time (sec): 74.95 - samples/sec: 1953.49 - lr: 0.000010 - momentum: 0.000000
|
439 |
+
2023-10-24 15:23:51,601 epoch 7 - iter 990/992 - loss 0.02140999 - time (sec): 83.33 - samples/sec: 1965.40 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-24 15:23:51,748 ----------------------------------------------------------------------------------------------------
|
441 |
+
2023-10-24 15:23:51,748 EPOCH 7 done: loss 0.0214 - lr: 0.000010
|
442 |
+
2023-10-24 15:23:54,863 DEV : loss 0.21153658628463745 - f1-score (micro avg) 0.7618
|
443 |
+
2023-10-24 15:23:54,878 ----------------------------------------------------------------------------------------------------
|
444 |
+
2023-10-24 15:24:03,108 epoch 8 - iter 99/992 - loss 0.01093374 - time (sec): 8.23 - samples/sec: 2004.96 - lr: 0.000010 - momentum: 0.000000
|
445 |
+
2023-10-24 15:24:11,138 epoch 8 - iter 198/992 - loss 0.01310924 - time (sec): 16.26 - samples/sec: 1936.95 - lr: 0.000009 - momentum: 0.000000
|
446 |
+
2023-10-24 15:24:19,358 epoch 8 - iter 297/992 - loss 0.01441408 - time (sec): 24.48 - samples/sec: 1940.68 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-24 15:24:28,043 epoch 8 - iter 396/992 - loss 0.01461590 - time (sec): 33.16 - samples/sec: 1935.65 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-24 15:24:36,832 epoch 8 - iter 495/992 - loss 0.01509641 - time (sec): 41.95 - samples/sec: 1945.22 - lr: 0.000008 - momentum: 0.000000
|
449 |
+
2023-10-24 15:24:45,127 epoch 8 - iter 594/992 - loss 0.01506859 - time (sec): 50.25 - samples/sec: 1947.58 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-24 15:24:54,112 epoch 8 - iter 693/992 - loss 0.01504122 - time (sec): 59.23 - samples/sec: 1956.47 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-24 15:25:02,153 epoch 8 - iter 792/992 - loss 0.01598623 - time (sec): 67.27 - samples/sec: 1948.08 - lr: 0.000007 - momentum: 0.000000
|
452 |
+
2023-10-24 15:25:10,479 epoch 8 - iter 891/992 - loss 0.01625220 - time (sec): 75.60 - samples/sec: 1952.55 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-24 15:25:18,505 epoch 8 - iter 990/992 - loss 0.01634153 - time (sec): 83.63 - samples/sec: 1955.26 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-24 15:25:18,705 ----------------------------------------------------------------------------------------------------
|
455 |
+
2023-10-24 15:25:18,706 EPOCH 8 done: loss 0.0163 - lr: 0.000007
|
456 |
+
2023-10-24 15:25:21,824 DEV : loss 0.214664027094841 - f1-score (micro avg) 0.7641
|
457 |
+
2023-10-24 15:25:21,839 ----------------------------------------------------------------------------------------------------
|
458 |
+
2023-10-24 15:25:30,320 epoch 9 - iter 99/992 - loss 0.00554736 - time (sec): 8.48 - samples/sec: 2033.00 - lr: 0.000006 - momentum: 0.000000
|
459 |
+
2023-10-24 15:25:38,987 epoch 9 - iter 198/992 - loss 0.00828502 - time (sec): 17.15 - samples/sec: 1982.71 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-24 15:25:47,155 epoch 9 - iter 297/992 - loss 0.00991386 - time (sec): 25.32 - samples/sec: 1992.59 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-24 15:25:55,662 epoch 9 - iter 396/992 - loss 0.00972216 - time (sec): 33.82 - samples/sec: 1976.94 - lr: 0.000005 - momentum: 0.000000
|
462 |
+
2023-10-24 15:26:03,891 epoch 9 - iter 495/992 - loss 0.00993347 - time (sec): 42.05 - samples/sec: 1975.37 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-24 15:26:12,678 epoch 9 - iter 594/992 - loss 0.01064234 - time (sec): 50.84 - samples/sec: 1976.16 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-24 15:26:20,744 epoch 9 - iter 693/992 - loss 0.01059840 - time (sec): 58.90 - samples/sec: 1972.26 - lr: 0.000004 - momentum: 0.000000
|
465 |
+
2023-10-24 15:26:28,796 epoch 9 - iter 792/992 - loss 0.01094734 - time (sec): 66.96 - samples/sec: 1967.66 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-24 15:26:36,898 epoch 9 - iter 891/992 - loss 0.01069492 - time (sec): 75.06 - samples/sec: 1964.87 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-24 15:26:45,130 epoch 9 - iter 990/992 - loss 0.01088973 - time (sec): 83.29 - samples/sec: 1965.18 - lr: 0.000003 - momentum: 0.000000
|
468 |
+
2023-10-24 15:26:45,309 ----------------------------------------------------------------------------------------------------
|
469 |
+
2023-10-24 15:26:45,309 EPOCH 9 done: loss 0.0109 - lr: 0.000003
|
470 |
+
2023-10-24 15:26:48,428 DEV : loss 0.22701114416122437 - f1-score (micro avg) 0.7697
|
471 |
+
2023-10-24 15:26:48,443 ----------------------------------------------------------------------------------------------------
|
472 |
+
2023-10-24 15:26:56,446 epoch 10 - iter 99/992 - loss 0.00704755 - time (sec): 8.00 - samples/sec: 1986.71 - lr: 0.000003 - momentum: 0.000000
|
473 |
+
2023-10-24 15:27:04,484 epoch 10 - iter 198/992 - loss 0.00802891 - time (sec): 16.04 - samples/sec: 1989.28 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-24 15:27:13,149 epoch 10 - iter 297/992 - loss 0.00713159 - time (sec): 24.71 - samples/sec: 2001.01 - lr: 0.000002 - momentum: 0.000000
|
475 |
+
2023-10-24 15:27:21,521 epoch 10 - iter 396/992 - loss 0.00689762 - time (sec): 33.08 - samples/sec: 1985.90 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-24 15:27:29,824 epoch 10 - iter 495/992 - loss 0.00714780 - time (sec): 41.38 - samples/sec: 1986.04 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-24 15:27:38,100 epoch 10 - iter 594/992 - loss 0.00737894 - time (sec): 49.66 - samples/sec: 1992.26 - lr: 0.000001 - momentum: 0.000000
|
478 |
+
2023-10-24 15:27:46,622 epoch 10 - iter 693/992 - loss 0.00692848 - time (sec): 58.18 - samples/sec: 1969.53 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-24 15:27:54,981 epoch 10 - iter 792/992 - loss 0.00716748 - time (sec): 66.54 - samples/sec: 1965.85 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-24 15:28:03,371 epoch 10 - iter 891/992 - loss 0.00737072 - time (sec): 74.93 - samples/sec: 1964.65 - lr: 0.000000 - momentum: 0.000000
|
481 |
+
2023-10-24 15:28:11,754 epoch 10 - iter 990/992 - loss 0.00752842 - time (sec): 83.31 - samples/sec: 1962.95 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-24 15:28:11,961 ----------------------------------------------------------------------------------------------------
|
483 |
+
2023-10-24 15:28:11,961 EPOCH 10 done: loss 0.0076 - lr: 0.000000
|
484 |
+
2023-10-24 15:28:15,064 DEV : loss 0.23377303779125214 - f1-score (micro avg) 0.7682
|
485 |
+
2023-10-24 15:28:15,642 ----------------------------------------------------------------------------------------------------
|
486 |
+
2023-10-24 15:28:15,642 Loading model from best epoch ...
|
487 |
+
2023-10-24 15:28:17,450 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
488 |
+
2023-10-24 15:28:20,523
|
489 |
+
Results:
|
490 |
+
- F-score (micro) 0.7766
|
491 |
+
- F-score (macro) 0.7019
|
492 |
+
- Accuracy 0.6524
|
493 |
+
|
494 |
+
By class:
|
495 |
+
precision recall f1-score support
|
496 |
+
|
497 |
+
LOC 0.8214 0.8214 0.8214 655
|
498 |
+
PER 0.7339 0.8161 0.7728 223
|
499 |
+
ORG 0.6250 0.4331 0.5116 127
|
500 |
+
|
501 |
+
micro avg 0.7820 0.7711 0.7766 1005
|
502 |
+
macro avg 0.7267 0.6902 0.7019 1005
|
503 |
+
weighted avg 0.7771 0.7711 0.7715 1005
|
504 |
+
|
505 |
+
2023-10-24 15:28:20,523 ----------------------------------------------------------------------------------------------------
|