File size: 4,773 Bytes
852857c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language: fr
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-tiny-historic-multilingual-cased
widget:
- text: Je suis convaincu , a-t43 dit . que nous n"y parviendrions pas , mais nous
    ne pouvons céder parce que l' état moral de nos troupe* en souffrirait trop .
    ( Fournier . ) Des avions ennemis lancent dix-sept bombes sur Dunkerque LONDRES
    . 31 décembre .
---

# Fine-tuned Flair Model on French ICDAR-Europeana NER Dataset

This Flair model was fine-tuned on the
[French ICDAR-Europeana](https://github.com/stefan-it/historic-domain-adaptation-icdar)
NER Dataset using hmBERT Tiny as backbone LM.

The ICDAR-Europeana NER Dataset is a preprocessed variant of the
[Europeana NER Corpora](https://github.com/EuropeanaNewspapers/ner-corpora) for Dutch and French.

The following NEs were annotated: `PER`, `LOC` and `ORG`.

# Results

We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:

* Batch Sizes: `[4, 8]`
* Learning Rates: `[5e-05, 3e-05]`

And report micro F1-score on development set:

| Configuration     | Seed 1       | Seed 2       | Seed 3       | Seed 4       | Seed 5          | Average         |
|-------------------|--------------|--------------|--------------|--------------|-----------------|-----------------|
| `bs4-e10-lr5e-05` | [0.6013][1]  | [0.5273][2]  | [0.6086][3]  | [0.6208][4]  | [**0.5731**][5] | 0.5862 ± 0.0373 |
| `bs8-e10-lr5e-05` | [0.6186][6]  | [0.4917][7]  | [0.6056][8]  | [0.5972][9]  | [0.4881][10]    | 0.5602 ± 0.0647 |
| `bs4-e10-lr3e-05` | [0.6034][11] | [0.4735][12] | [0.5837][13] | [0.578][14]  | [0.4716][15]    | 0.542 ± 0.0641  |
| `bs8-e10-lr3e-05` | [0.5743][16] | [0.4119][17] | [0.551][18]  | [0.5261][19] | [0.4408][20]    | 0.5008 ± 0.0708 |

[1]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5

The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.

More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).

# Acknowledgements

We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.

Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️