Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697661137.46dc0c540dd0.3341.2 +3 -0
- test.tsv +0 -0
- training.log +246 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7a4b91e310e8d3f741cf6b5fecad29a0d1e33bff6d75e2f3ceed291aaf91f87
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 20:32:41 0.0000 1.1686 0.2587 0.3529 0.0611 0.1041 0.0567
|
3 |
+
2 20:33:05 0.0000 0.3001 0.1854 0.3742 0.3247 0.3477 0.2289
|
4 |
+
3 20:33:30 0.0000 0.2428 0.1634 0.4297 0.4186 0.4241 0.2927
|
5 |
+
4 20:33:54 0.0000 0.2173 0.1565 0.4913 0.4785 0.4848 0.3459
|
6 |
+
5 20:34:19 0.0000 0.2012 0.1485 0.5058 0.5407 0.5227 0.3855
|
7 |
+
6 20:34:43 0.0000 0.1906 0.1433 0.5397 0.5611 0.5502 0.4092
|
8 |
+
7 20:35:08 0.0000 0.1826 0.1391 0.5600 0.5645 0.5623 0.4200
|
9 |
+
8 20:35:32 0.0000 0.1782 0.1373 0.5745 0.5713 0.5729 0.4313
|
10 |
+
9 20:35:57 0.0000 0.1719 0.1383 0.5737 0.5679 0.5708 0.4287
|
11 |
+
10 20:36:21 0.0000 0.1715 0.1362 0.5717 0.5769 0.5743 0.4333
|
runs/events.out.tfevents.1697661137.46dc0c540dd0.3341.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f682027a69221628a8622f851db4aa53314b01cc8797656048c31d59e464b6a
|
3 |
+
size 556612
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 20:32:17,044 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 20:32:17,044 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 20:32:17,044 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 20:32:17,044 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-18 20:32:17,044 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 20:32:17,044 Train: 7936 sentences
|
55 |
+
2023-10-18 20:32:17,044 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 20:32:17,044 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 20:32:17,045 Training Params:
|
58 |
+
2023-10-18 20:32:17,045 - learning_rate: "3e-05"
|
59 |
+
2023-10-18 20:32:17,045 - mini_batch_size: "8"
|
60 |
+
2023-10-18 20:32:17,045 - max_epochs: "10"
|
61 |
+
2023-10-18 20:32:17,045 - shuffle: "True"
|
62 |
+
2023-10-18 20:32:17,045 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 20:32:17,045 Plugins:
|
64 |
+
2023-10-18 20:32:17,045 - TensorboardLogger
|
65 |
+
2023-10-18 20:32:17,045 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 20:32:17,045 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 20:32:17,045 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 20:32:17,045 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 20:32:17,045 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 20:32:17,045 Computation:
|
71 |
+
2023-10-18 20:32:17,045 - compute on device: cuda:0
|
72 |
+
2023-10-18 20:32:17,045 - embedding storage: none
|
73 |
+
2023-10-18 20:32:17,045 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 20:32:17,045 Model training base path: "hmbench-icdar/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
75 |
+
2023-10-18 20:32:17,045 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 20:32:17,045 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 20:32:17,045 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 20:32:19,153 epoch 1 - iter 99/992 - loss 3.26900601 - time (sec): 2.11 - samples/sec: 7728.61 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-18 20:32:21,668 epoch 1 - iter 198/992 - loss 3.01174688 - time (sec): 4.62 - samples/sec: 7025.90 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-18 20:32:23,881 epoch 1 - iter 297/992 - loss 2.64131737 - time (sec): 6.84 - samples/sec: 7198.35 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-18 20:32:26,462 epoch 1 - iter 396/992 - loss 2.23150630 - time (sec): 9.42 - samples/sec: 6982.05 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-18 20:32:28,635 epoch 1 - iter 495/992 - loss 1.90904405 - time (sec): 11.59 - samples/sec: 7026.98 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-18 20:32:30,871 epoch 1 - iter 594/992 - loss 1.67059385 - time (sec): 13.83 - samples/sec: 7081.35 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-18 20:32:33,068 epoch 1 - iter 693/992 - loss 1.49967758 - time (sec): 16.02 - samples/sec: 7114.89 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-18 20:32:35,281 epoch 1 - iter 792/992 - loss 1.36387729 - time (sec): 18.24 - samples/sec: 7181.71 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-18 20:32:37,528 epoch 1 - iter 891/992 - loss 1.25925333 - time (sec): 20.48 - samples/sec: 7183.73 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-18 20:32:39,760 epoch 1 - iter 990/992 - loss 1.17027992 - time (sec): 22.71 - samples/sec: 7203.37 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-18 20:32:39,805 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 20:32:39,805 EPOCH 1 done: loss 1.1686 - lr: 0.000030
|
90 |
+
2023-10-18 20:32:41,275 DEV : loss 0.25871363282203674 - f1-score (micro avg) 0.1041
|
91 |
+
2023-10-18 20:32:41,293 saving best model
|
92 |
+
2023-10-18 20:32:41,328 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-18 20:32:43,608 epoch 2 - iter 99/992 - loss 0.38667417 - time (sec): 2.28 - samples/sec: 7457.05 - lr: 0.000030 - momentum: 0.000000
|
94 |
+
2023-10-18 20:32:45,809 epoch 2 - iter 198/992 - loss 0.35532658 - time (sec): 4.48 - samples/sec: 7551.86 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-18 20:32:48,030 epoch 2 - iter 297/992 - loss 0.34540051 - time (sec): 6.70 - samples/sec: 7473.14 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-18 20:32:50,309 epoch 2 - iter 396/992 - loss 0.33013814 - time (sec): 8.98 - samples/sec: 7347.87 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2023-10-18 20:32:52,637 epoch 2 - iter 495/992 - loss 0.32197045 - time (sec): 11.31 - samples/sec: 7343.57 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-18 20:32:54,913 epoch 2 - iter 594/992 - loss 0.31801653 - time (sec): 13.59 - samples/sec: 7323.60 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-18 20:32:57,144 epoch 2 - iter 693/992 - loss 0.30876076 - time (sec): 15.82 - samples/sec: 7351.65 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2023-10-18 20:32:59,360 epoch 2 - iter 792/992 - loss 0.30673219 - time (sec): 18.03 - samples/sec: 7354.43 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-18 20:33:01,529 epoch 2 - iter 891/992 - loss 0.30357404 - time (sec): 20.20 - samples/sec: 7336.57 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-18 20:33:03,726 epoch 2 - iter 990/992 - loss 0.30024812 - time (sec): 22.40 - samples/sec: 7305.76 - lr: 0.000027 - momentum: 0.000000
|
103 |
+
2023-10-18 20:33:03,769 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-18 20:33:03,769 EPOCH 2 done: loss 0.3001 - lr: 0.000027
|
105 |
+
2023-10-18 20:33:05,604 DEV : loss 0.1853763908147812 - f1-score (micro avg) 0.3477
|
106 |
+
2023-10-18 20:33:05,622 saving best model
|
107 |
+
2023-10-18 20:33:05,658 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-18 20:33:07,896 epoch 3 - iter 99/992 - loss 0.23413942 - time (sec): 2.24 - samples/sec: 7285.51 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-18 20:33:10,145 epoch 3 - iter 198/992 - loss 0.22991950 - time (sec): 4.49 - samples/sec: 7312.34 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-18 20:33:12,378 epoch 3 - iter 297/992 - loss 0.25254134 - time (sec): 6.72 - samples/sec: 7251.19 - lr: 0.000026 - momentum: 0.000000
|
111 |
+
2023-10-18 20:33:14,643 epoch 3 - iter 396/992 - loss 0.24877043 - time (sec): 8.98 - samples/sec: 7308.99 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-18 20:33:16,809 epoch 3 - iter 495/992 - loss 0.24911355 - time (sec): 11.15 - samples/sec: 7288.56 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-18 20:33:19,031 epoch 3 - iter 594/992 - loss 0.24658049 - time (sec): 13.37 - samples/sec: 7337.19 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2023-10-18 20:33:21,280 epoch 3 - iter 693/992 - loss 0.24936620 - time (sec): 15.62 - samples/sec: 7303.17 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-18 20:33:23,521 epoch 3 - iter 792/992 - loss 0.24772256 - time (sec): 17.86 - samples/sec: 7324.51 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-18 20:33:25,756 epoch 3 - iter 891/992 - loss 0.24405967 - time (sec): 20.10 - samples/sec: 7330.03 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2023-10-18 20:33:27,957 epoch 3 - iter 990/992 - loss 0.24272779 - time (sec): 22.30 - samples/sec: 7334.09 - lr: 0.000023 - momentum: 0.000000
|
118 |
+
2023-10-18 20:33:28,002 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-18 20:33:28,002 EPOCH 3 done: loss 0.2428 - lr: 0.000023
|
120 |
+
2023-10-18 20:33:30,215 DEV : loss 0.16335979104042053 - f1-score (micro avg) 0.4241
|
121 |
+
2023-10-18 20:33:30,233 saving best model
|
122 |
+
2023-10-18 20:33:30,266 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-18 20:33:32,469 epoch 4 - iter 99/992 - loss 0.22443699 - time (sec): 2.20 - samples/sec: 7430.86 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-18 20:33:34,801 epoch 4 - iter 198/992 - loss 0.23701210 - time (sec): 4.53 - samples/sec: 7160.62 - lr: 0.000023 - momentum: 0.000000
|
125 |
+
2023-10-18 20:33:37,037 epoch 4 - iter 297/992 - loss 0.23242108 - time (sec): 6.77 - samples/sec: 7084.78 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-18 20:33:39,238 epoch 4 - iter 396/992 - loss 0.23657149 - time (sec): 8.97 - samples/sec: 7067.25 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-18 20:33:41,445 epoch 4 - iter 495/992 - loss 0.23101340 - time (sec): 11.18 - samples/sec: 7103.06 - lr: 0.000022 - momentum: 0.000000
|
128 |
+
2023-10-18 20:33:43,690 epoch 4 - iter 594/992 - loss 0.22285698 - time (sec): 13.42 - samples/sec: 7137.36 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-18 20:33:45,950 epoch 4 - iter 693/992 - loss 0.22245975 - time (sec): 15.68 - samples/sec: 7232.76 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-18 20:33:48,271 epoch 4 - iter 792/992 - loss 0.21974109 - time (sec): 18.00 - samples/sec: 7230.28 - lr: 0.000021 - momentum: 0.000000
|
131 |
+
2023-10-18 20:33:50,429 epoch 4 - iter 891/992 - loss 0.22008264 - time (sec): 20.16 - samples/sec: 7241.30 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-18 20:33:52,672 epoch 4 - iter 990/992 - loss 0.21727144 - time (sec): 22.41 - samples/sec: 7304.02 - lr: 0.000020 - momentum: 0.000000
|
133 |
+
2023-10-18 20:33:52,723 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-18 20:33:52,723 EPOCH 4 done: loss 0.2173 - lr: 0.000020
|
135 |
+
2023-10-18 20:33:54,524 DEV : loss 0.15653517842292786 - f1-score (micro avg) 0.4848
|
136 |
+
2023-10-18 20:33:54,542 saving best model
|
137 |
+
2023-10-18 20:33:54,578 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-18 20:33:56,710 epoch 5 - iter 99/992 - loss 0.24537712 - time (sec): 2.13 - samples/sec: 6996.16 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2023-10-18 20:33:58,940 epoch 5 - iter 198/992 - loss 0.21134377 - time (sec): 4.36 - samples/sec: 7459.07 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-18 20:34:01,175 epoch 5 - iter 297/992 - loss 0.20640811 - time (sec): 6.60 - samples/sec: 7433.04 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-18 20:34:03,545 epoch 5 - iter 396/992 - loss 0.20197952 - time (sec): 8.97 - samples/sec: 7362.38 - lr: 0.000019 - momentum: 0.000000
|
142 |
+
2023-10-18 20:34:05,772 epoch 5 - iter 495/992 - loss 0.20092622 - time (sec): 11.19 - samples/sec: 7287.58 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-18 20:34:08,064 epoch 5 - iter 594/992 - loss 0.20292860 - time (sec): 13.49 - samples/sec: 7292.89 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-18 20:34:10,381 epoch 5 - iter 693/992 - loss 0.20258902 - time (sec): 15.80 - samples/sec: 7276.17 - lr: 0.000018 - momentum: 0.000000
|
145 |
+
2023-10-18 20:34:12,621 epoch 5 - iter 792/992 - loss 0.20192145 - time (sec): 18.04 - samples/sec: 7294.30 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-18 20:34:14,841 epoch 5 - iter 891/992 - loss 0.20140955 - time (sec): 20.26 - samples/sec: 7293.58 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-18 20:34:17,121 epoch 5 - iter 990/992 - loss 0.20126076 - time (sec): 22.54 - samples/sec: 7259.31 - lr: 0.000017 - momentum: 0.000000
|
148 |
+
2023-10-18 20:34:17,169 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-18 20:34:17,169 EPOCH 5 done: loss 0.2012 - lr: 0.000017
|
150 |
+
2023-10-18 20:34:18,982 DEV : loss 0.1485081911087036 - f1-score (micro avg) 0.5227
|
151 |
+
2023-10-18 20:34:19,001 saving best model
|
152 |
+
2023-10-18 20:34:19,036 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-18 20:34:21,233 epoch 6 - iter 99/992 - loss 0.22430179 - time (sec): 2.20 - samples/sec: 7017.32 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-18 20:34:23,529 epoch 6 - iter 198/992 - loss 0.20436870 - time (sec): 4.49 - samples/sec: 7055.19 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-18 20:34:25,787 epoch 6 - iter 297/992 - loss 0.20029647 - time (sec): 6.75 - samples/sec: 7028.76 - lr: 0.000016 - momentum: 0.000000
|
156 |
+
2023-10-18 20:34:28,088 epoch 6 - iter 396/992 - loss 0.20256720 - time (sec): 9.05 - samples/sec: 7025.13 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-18 20:34:30,365 epoch 6 - iter 495/992 - loss 0.20317747 - time (sec): 11.33 - samples/sec: 7096.80 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-18 20:34:32,649 epoch 6 - iter 594/992 - loss 0.19651111 - time (sec): 13.61 - samples/sec: 7152.66 - lr: 0.000015 - momentum: 0.000000
|
159 |
+
2023-10-18 20:34:34,851 epoch 6 - iter 693/992 - loss 0.19268692 - time (sec): 15.81 - samples/sec: 7234.86 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-18 20:34:37,113 epoch 6 - iter 792/992 - loss 0.19172945 - time (sec): 18.08 - samples/sec: 7238.22 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-18 20:34:39,321 epoch 6 - iter 891/992 - loss 0.19360741 - time (sec): 20.28 - samples/sec: 7259.92 - lr: 0.000014 - momentum: 0.000000
|
162 |
+
2023-10-18 20:34:41,590 epoch 6 - iter 990/992 - loss 0.19064340 - time (sec): 22.55 - samples/sec: 7256.27 - lr: 0.000013 - momentum: 0.000000
|
163 |
+
2023-10-18 20:34:41,642 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-18 20:34:41,642 EPOCH 6 done: loss 0.1906 - lr: 0.000013
|
165 |
+
2023-10-18 20:34:43,465 DEV : loss 0.1433064043521881 - f1-score (micro avg) 0.5502
|
166 |
+
2023-10-18 20:34:43,483 saving best model
|
167 |
+
2023-10-18 20:34:43,516 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-18 20:34:45,840 epoch 7 - iter 99/992 - loss 0.21206962 - time (sec): 2.32 - samples/sec: 6893.32 - lr: 0.000013 - momentum: 0.000000
|
169 |
+
2023-10-18 20:34:48,076 epoch 7 - iter 198/992 - loss 0.19780535 - time (sec): 4.56 - samples/sec: 7095.06 - lr: 0.000013 - momentum: 0.000000
|
170 |
+
2023-10-18 20:34:50,388 epoch 7 - iter 297/992 - loss 0.19634963 - time (sec): 6.87 - samples/sec: 7052.69 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-18 20:34:52,686 epoch 7 - iter 396/992 - loss 0.18709449 - time (sec): 9.17 - samples/sec: 7163.54 - lr: 0.000012 - momentum: 0.000000
|
172 |
+
2023-10-18 20:34:54,903 epoch 7 - iter 495/992 - loss 0.18615423 - time (sec): 11.39 - samples/sec: 7245.35 - lr: 0.000012 - momentum: 0.000000
|
173 |
+
2023-10-18 20:34:57,221 epoch 7 - iter 594/992 - loss 0.18575283 - time (sec): 13.70 - samples/sec: 7174.74 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-10-18 20:34:59,457 epoch 7 - iter 693/992 - loss 0.18299791 - time (sec): 15.94 - samples/sec: 7216.08 - lr: 0.000011 - momentum: 0.000000
|
175 |
+
2023-10-18 20:35:01,674 epoch 7 - iter 792/992 - loss 0.18308143 - time (sec): 18.16 - samples/sec: 7207.35 - lr: 0.000011 - momentum: 0.000000
|
176 |
+
2023-10-18 20:35:03,934 epoch 7 - iter 891/992 - loss 0.18248990 - time (sec): 20.42 - samples/sec: 7196.20 - lr: 0.000010 - momentum: 0.000000
|
177 |
+
2023-10-18 20:35:06,151 epoch 7 - iter 990/992 - loss 0.18260769 - time (sec): 22.63 - samples/sec: 7235.83 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-10-18 20:35:06,190 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-18 20:35:06,190 EPOCH 7 done: loss 0.1826 - lr: 0.000010
|
180 |
+
2023-10-18 20:35:08,035 DEV : loss 0.13907533884048462 - f1-score (micro avg) 0.5623
|
181 |
+
2023-10-18 20:35:08,053 saving best model
|
182 |
+
2023-10-18 20:35:08,086 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-18 20:35:10,249 epoch 8 - iter 99/992 - loss 0.18323978 - time (sec): 2.16 - samples/sec: 7443.73 - lr: 0.000010 - momentum: 0.000000
|
184 |
+
2023-10-18 20:35:12,450 epoch 8 - iter 198/992 - loss 0.17828271 - time (sec): 4.36 - samples/sec: 7283.96 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-10-18 20:35:14,693 epoch 8 - iter 297/992 - loss 0.17876581 - time (sec): 6.61 - samples/sec: 7145.60 - lr: 0.000009 - momentum: 0.000000
|
186 |
+
2023-10-18 20:35:17,019 epoch 8 - iter 396/992 - loss 0.18045852 - time (sec): 8.93 - samples/sec: 7189.34 - lr: 0.000009 - momentum: 0.000000
|
187 |
+
2023-10-18 20:35:19,211 epoch 8 - iter 495/992 - loss 0.18102038 - time (sec): 11.12 - samples/sec: 7197.08 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-10-18 20:35:21,483 epoch 8 - iter 594/992 - loss 0.17757856 - time (sec): 13.40 - samples/sec: 7297.71 - lr: 0.000008 - momentum: 0.000000
|
189 |
+
2023-10-18 20:35:23,754 epoch 8 - iter 693/992 - loss 0.17685881 - time (sec): 15.67 - samples/sec: 7241.95 - lr: 0.000008 - momentum: 0.000000
|
190 |
+
2023-10-18 20:35:25,987 epoch 8 - iter 792/992 - loss 0.17740407 - time (sec): 17.90 - samples/sec: 7287.46 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-10-18 20:35:28,216 epoch 8 - iter 891/992 - loss 0.17815940 - time (sec): 20.13 - samples/sec: 7300.64 - lr: 0.000007 - momentum: 0.000000
|
192 |
+
2023-10-18 20:35:30,534 epoch 8 - iter 990/992 - loss 0.17824616 - time (sec): 22.45 - samples/sec: 7293.89 - lr: 0.000007 - momentum: 0.000000
|
193 |
+
2023-10-18 20:35:30,576 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-18 20:35:30,576 EPOCH 8 done: loss 0.1782 - lr: 0.000007
|
195 |
+
2023-10-18 20:35:32,760 DEV : loss 0.1372818648815155 - f1-score (micro avg) 0.5729
|
196 |
+
2023-10-18 20:35:32,778 saving best model
|
197 |
+
2023-10-18 20:35:32,810 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-18 20:35:35,075 epoch 9 - iter 99/992 - loss 0.15969196 - time (sec): 2.26 - samples/sec: 7173.67 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-18 20:35:37,180 epoch 9 - iter 198/992 - loss 0.17448311 - time (sec): 4.37 - samples/sec: 7508.59 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-18 20:35:39,362 epoch 9 - iter 297/992 - loss 0.17623452 - time (sec): 6.55 - samples/sec: 7368.61 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-18 20:35:41,713 epoch 9 - iter 396/992 - loss 0.17504733 - time (sec): 8.90 - samples/sec: 7178.40 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2023-10-18 20:35:43,965 epoch 9 - iter 495/992 - loss 0.17349129 - time (sec): 11.15 - samples/sec: 7243.56 - lr: 0.000005 - momentum: 0.000000
|
203 |
+
2023-10-18 20:35:46,194 epoch 9 - iter 594/992 - loss 0.17420767 - time (sec): 13.38 - samples/sec: 7235.24 - lr: 0.000005 - momentum: 0.000000
|
204 |
+
2023-10-18 20:35:48,470 epoch 9 - iter 693/992 - loss 0.17251140 - time (sec): 15.66 - samples/sec: 7298.69 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-10-18 20:35:50,625 epoch 9 - iter 792/992 - loss 0.17353050 - time (sec): 17.81 - samples/sec: 7306.77 - lr: 0.000004 - momentum: 0.000000
|
206 |
+
2023-10-18 20:35:52,833 epoch 9 - iter 891/992 - loss 0.17204365 - time (sec): 20.02 - samples/sec: 7322.75 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-18 20:35:55,115 epoch 9 - iter 990/992 - loss 0.17187736 - time (sec): 22.30 - samples/sec: 7339.19 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-18 20:35:55,161 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-18 20:35:55,161 EPOCH 9 done: loss 0.1719 - lr: 0.000003
|
210 |
+
2023-10-18 20:35:56,988 DEV : loss 0.13832369446754456 - f1-score (micro avg) 0.5708
|
211 |
+
2023-10-18 20:35:57,009 ----------------------------------------------------------------------------------------------------
|
212 |
+
2023-10-18 20:35:59,237 epoch 10 - iter 99/992 - loss 0.17701827 - time (sec): 2.23 - samples/sec: 7049.38 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-18 20:36:01,471 epoch 10 - iter 198/992 - loss 0.17977925 - time (sec): 4.46 - samples/sec: 7194.13 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-10-18 20:36:03,693 epoch 10 - iter 297/992 - loss 0.17530848 - time (sec): 6.68 - samples/sec: 7174.37 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-18 20:36:05,955 epoch 10 - iter 396/992 - loss 0.16854571 - time (sec): 8.95 - samples/sec: 7225.38 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-18 20:36:08,161 epoch 10 - iter 495/992 - loss 0.17158421 - time (sec): 11.15 - samples/sec: 7266.51 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-18 20:36:10,360 epoch 10 - iter 594/992 - loss 0.17275765 - time (sec): 13.35 - samples/sec: 7251.27 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-18 20:36:12,695 epoch 10 - iter 693/992 - loss 0.17130222 - time (sec): 15.69 - samples/sec: 7288.10 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-18 20:36:14,930 epoch 10 - iter 792/992 - loss 0.17016111 - time (sec): 17.92 - samples/sec: 7261.87 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-18 20:36:17,124 epoch 10 - iter 891/992 - loss 0.17025831 - time (sec): 20.11 - samples/sec: 7300.56 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-18 20:36:19,367 epoch 10 - iter 990/992 - loss 0.17132536 - time (sec): 22.36 - samples/sec: 7317.61 - lr: 0.000000 - momentum: 0.000000
|
222 |
+
2023-10-18 20:36:19,412 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-18 20:36:19,412 EPOCH 10 done: loss 0.1715 - lr: 0.000000
|
224 |
+
2023-10-18 20:36:21,225 DEV : loss 0.13621357083320618 - f1-score (micro avg) 0.5743
|
225 |
+
2023-10-18 20:36:21,244 saving best model
|
226 |
+
2023-10-18 20:36:21,307 ----------------------------------------------------------------------------------------------------
|
227 |
+
2023-10-18 20:36:21,307 Loading model from best epoch ...
|
228 |
+
2023-10-18 20:36:21,389 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
229 |
+
2023-10-18 20:36:22,927
|
230 |
+
Results:
|
231 |
+
- F-score (micro) 0.5768
|
232 |
+
- F-score (macro) 0.3939
|
233 |
+
- Accuracy 0.4531
|
234 |
+
|
235 |
+
By class:
|
236 |
+
precision recall f1-score support
|
237 |
+
|
238 |
+
LOC 0.7394 0.6672 0.7014 655
|
239 |
+
PER 0.3516 0.6323 0.4519 223
|
240 |
+
ORG 0.1429 0.0157 0.0284 127
|
241 |
+
|
242 |
+
micro avg 0.5765 0.5771 0.5768 1005
|
243 |
+
macro avg 0.4113 0.4384 0.3939 1005
|
244 |
+
weighted avg 0.5780 0.5771 0.5610 1005
|
245 |
+
|
246 |
+
2023-10-18 20:36:22,927 ----------------------------------------------------------------------------------------------------
|