--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-tiny-historic-multilingual-cased widget: - text: Je suis convaincu , a-t43 dit . que nous n"y parviendrions pas , mais nous ne pouvons céder parce que l' état moral de nos troupe* en souffrirait trop . ( Fournier . ) Des avions ennemis lancent dix-sept bombes sur Dunkerque LONDRES . 31 décembre . --- # Fine-tuned Flair Model on French ICDAR-Europeana NER Dataset This Flair model was fine-tuned on the [French ICDAR-Europeana](https://github.com/stefan-it/historic-domain-adaptation-icdar) NER Dataset using hmBERT Tiny as backbone LM. The ICDAR-Europeana NER Dataset is a preprocessed variant of the [Europeana NER Corpora](https://github.com/EuropeanaNewspapers/ner-corpora) for Dutch and French. The following NEs were annotated: `PER`, `LOC` and `ORG`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[5e-05, 3e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|--------------|--------------|-----------------|--------------|--------------|-----------------| | `bs4-e10-lr5e-05` | [0.6013][1] | [0.5273][2] | [0.6086][3] | [0.6208][4] | [0.5731][5] | 0.5862 ± 0.0373 | | `bs8-e10-lr5e-05` | [0.6186][6] | [0.4917][7] | [**0.6056**][8] | [0.5972][9] | [0.4881][10] | 0.5602 ± 0.0647 | | `bs4-e10-lr3e-05` | [0.6034][11] | [0.4735][12] | [0.5837][13] | [0.578][14] | [0.4716][15] | 0.542 ± 0.0641 | | `bs8-e10-lr3e-05` | [0.5743][16] | [0.4119][17] | [0.551][18] | [0.5261][19] | [0.4408][20] | 0.5008 ± 0.0708 | [1]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️