File size: 4,779 Bytes
26282a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language: fr
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-tiny-historic-multilingual-cased
widget:
- text: Je suis convaincu , a-t43 dit . que nous n"y parviendrions pas , mais nous
ne pouvons céder parce que l' état moral de nos troupe* en souffrirait trop .
( Fournier . ) Des avions ennemis lancent dix-sept bombes sur Dunkerque LONDRES
. 31 décembre .
---
# Fine-tuned Flair Model on French ICDAR-Europeana NER Dataset
This Flair model was fine-tuned on the
[French ICDAR-Europeana](https://github.com/stefan-it/historic-domain-adaptation-icdar)
NER Dataset using hmBERT Tiny as backbone LM.
The ICDAR-Europeana NER Dataset is a preprocessed variant of the
[Europeana NER Corpora](https://github.com/EuropeanaNewspapers/ner-corpora) for Dutch and French.
The following NEs were annotated: `PER`, `LOC` and `ORG`.
# Results
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
* Batch Sizes: `[4, 8]`
* Learning Rates: `[5e-05, 3e-05]`
And report micro F1-score on development set:
| Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
|-------------------|--------------|--------------|--------------|--------------|------------------|-----------------|
| `bs4-e10-lr5e-05` | [0.6013][1] | [0.5273][2] | [0.6086][3] | [0.6208][4] | [0.5731][5] | 0.5862 ± 0.0373 |
| `bs8-e10-lr5e-05` | [0.6186][6] | [0.4917][7] | [0.6056][8] | [0.5972][9] | [**0.4881**][10] | 0.5602 ± 0.0647 |
| `bs4-e10-lr3e-05` | [0.6034][11] | [0.4735][12] | [0.5837][13] | [0.578][14] | [0.4716][15] | 0.542 ± 0.0641 |
| `bs8-e10-lr3e-05` | [0.5743][16] | [0.4119][17] | [0.551][18] | [0.5261][19] | [0.4408][20] | 0.5008 ± 0.0708 |
[1]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/stefan-it/hmbench-icdar-fr-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
# Acknowledgements
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️
|