Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697666073.46dc0c540dd0.3341.19 +3 -0
- test.tsv +0 -0
- training.log +245 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fee23266555510fad03bf060eb4fa8a816f5e7dfb0895e8bf749a2f20eb53ebd
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 21:54:57 0.0000 0.9704 0.2183 0.3298 0.3213 0.3255 0.2185
|
3 |
+
2 21:55:21 0.0000 0.2748 0.1905 0.3265 0.4118 0.3642 0.2490
|
4 |
+
3 21:55:45 0.0000 0.2337 0.1749 0.3976 0.4412 0.4182 0.2863
|
5 |
+
4 21:56:09 0.0000 0.2099 0.1590 0.4064 0.4570 0.4302 0.2958
|
6 |
+
5 21:56:33 0.0000 0.1918 0.1518 0.4356 0.4977 0.4646 0.3242
|
7 |
+
6 21:56:58 0.0000 0.1799 0.1518 0.4339 0.4977 0.4636 0.3242
|
8 |
+
7 21:57:23 0.0000 0.1710 0.1477 0.4308 0.4966 0.4614 0.3233
|
9 |
+
8 21:57:47 0.0000 0.1653 0.1502 0.4358 0.5181 0.4734 0.3336
|
10 |
+
9 21:58:11 0.0000 0.1599 0.1510 0.4498 0.5170 0.4811 0.3416
|
11 |
+
10 21:58:36 0.0000 0.1566 0.1495 0.4571 0.5238 0.4881 0.3471
|
runs/events.out.tfevents.1697666073.46dc0c540dd0.3341.19
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0c5aaab010007ef44677be29514571b3bb2d07c1a0a8d1941fbf151fa0d4614
|
3 |
+
size 556612
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 21:54:33,271 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 21:54:33,272 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 21:54:33,272 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 21:54:33,272 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-18 21:54:33,272 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 21:54:33,272 Train: 7936 sentences
|
55 |
+
2023-10-18 21:54:33,272 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 21:54:33,272 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 21:54:33,272 Training Params:
|
58 |
+
2023-10-18 21:54:33,272 - learning_rate: "5e-05"
|
59 |
+
2023-10-18 21:54:33,272 - mini_batch_size: "8"
|
60 |
+
2023-10-18 21:54:33,272 - max_epochs: "10"
|
61 |
+
2023-10-18 21:54:33,272 - shuffle: "True"
|
62 |
+
2023-10-18 21:54:33,272 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 21:54:33,272 Plugins:
|
64 |
+
2023-10-18 21:54:33,272 - TensorboardLogger
|
65 |
+
2023-10-18 21:54:33,272 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 21:54:33,272 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 21:54:33,272 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 21:54:33,272 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 21:54:33,272 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 21:54:33,272 Computation:
|
71 |
+
2023-10-18 21:54:33,272 - compute on device: cuda:0
|
72 |
+
2023-10-18 21:54:33,272 - embedding storage: none
|
73 |
+
2023-10-18 21:54:33,272 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 21:54:33,272 Model training base path: "hmbench-icdar/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
75 |
+
2023-10-18 21:54:33,273 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 21:54:33,273 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 21:54:33,273 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 21:54:35,500 epoch 1 - iter 99/992 - loss 3.11355291 - time (sec): 2.23 - samples/sec: 7666.30 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-18 21:54:37,678 epoch 1 - iter 198/992 - loss 2.79550926 - time (sec): 4.40 - samples/sec: 7440.64 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-18 21:54:39,905 epoch 1 - iter 297/992 - loss 2.26929089 - time (sec): 6.63 - samples/sec: 7505.99 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-18 21:54:42,204 epoch 1 - iter 396/992 - loss 1.82821963 - time (sec): 8.93 - samples/sec: 7490.72 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-18 21:54:44,416 epoch 1 - iter 495/992 - loss 1.57018564 - time (sec): 11.14 - samples/sec: 7467.81 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-18 21:54:46,645 epoch 1 - iter 594/992 - loss 1.38359360 - time (sec): 13.37 - samples/sec: 7441.53 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-18 21:54:48,875 epoch 1 - iter 693/992 - loss 1.23623179 - time (sec): 15.60 - samples/sec: 7446.06 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-18 21:54:51,050 epoch 1 - iter 792/992 - loss 1.12943382 - time (sec): 17.78 - samples/sec: 7407.13 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-18 21:54:53,334 epoch 1 - iter 891/992 - loss 1.04184352 - time (sec): 20.06 - samples/sec: 7358.15 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-18 21:54:55,537 epoch 1 - iter 990/992 - loss 0.97151767 - time (sec): 22.26 - samples/sec: 7352.94 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-18 21:54:55,582 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 21:54:55,582 EPOCH 1 done: loss 0.9704 - lr: 0.000050
|
90 |
+
2023-10-18 21:54:57,145 DEV : loss 0.21833859384059906 - f1-score (micro avg) 0.3255
|
91 |
+
2023-10-18 21:54:57,164 saving best model
|
92 |
+
2023-10-18 21:54:57,197 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-18 21:54:59,459 epoch 2 - iter 99/992 - loss 0.32706359 - time (sec): 2.26 - samples/sec: 7173.70 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-18 21:55:01,708 epoch 2 - iter 198/992 - loss 0.30563463 - time (sec): 4.51 - samples/sec: 7302.81 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-18 21:55:03,969 epoch 2 - iter 297/992 - loss 0.29429747 - time (sec): 6.77 - samples/sec: 7288.04 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-18 21:55:06,244 epoch 2 - iter 396/992 - loss 0.29148563 - time (sec): 9.05 - samples/sec: 7349.37 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-18 21:55:08,509 epoch 2 - iter 495/992 - loss 0.28801704 - time (sec): 11.31 - samples/sec: 7327.17 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-18 21:55:10,695 epoch 2 - iter 594/992 - loss 0.28735579 - time (sec): 13.50 - samples/sec: 7332.54 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-18 21:55:12,926 epoch 2 - iter 693/992 - loss 0.28460464 - time (sec): 15.73 - samples/sec: 7250.53 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-18 21:55:15,130 epoch 2 - iter 792/992 - loss 0.28520998 - time (sec): 17.93 - samples/sec: 7217.01 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-18 21:55:17,353 epoch 2 - iter 891/992 - loss 0.28026538 - time (sec): 20.16 - samples/sec: 7269.54 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-18 21:55:19,536 epoch 2 - iter 990/992 - loss 0.27503839 - time (sec): 22.34 - samples/sec: 7321.67 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-18 21:55:19,584 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-18 21:55:19,584 EPOCH 2 done: loss 0.2748 - lr: 0.000044
|
105 |
+
2023-10-18 21:55:21,774 DEV : loss 0.19050592184066772 - f1-score (micro avg) 0.3642
|
106 |
+
2023-10-18 21:55:21,794 saving best model
|
107 |
+
2023-10-18 21:55:21,829 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-18 21:55:24,022 epoch 3 - iter 99/992 - loss 0.24311763 - time (sec): 2.19 - samples/sec: 7302.08 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-18 21:55:26,230 epoch 3 - iter 198/992 - loss 0.23452324 - time (sec): 4.40 - samples/sec: 7287.89 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-18 21:55:28,453 epoch 3 - iter 297/992 - loss 0.22907305 - time (sec): 6.62 - samples/sec: 7223.86 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-18 21:55:30,594 epoch 3 - iter 396/992 - loss 0.23622014 - time (sec): 8.76 - samples/sec: 7324.50 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-18 21:55:32,575 epoch 3 - iter 495/992 - loss 0.23845281 - time (sec): 10.75 - samples/sec: 7506.47 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-18 21:55:34,775 epoch 3 - iter 594/992 - loss 0.23683125 - time (sec): 12.95 - samples/sec: 7508.86 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-18 21:55:36,956 epoch 3 - iter 693/992 - loss 0.23617397 - time (sec): 15.13 - samples/sec: 7515.06 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-18 21:55:39,166 epoch 3 - iter 792/992 - loss 0.23480189 - time (sec): 17.34 - samples/sec: 7516.39 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-18 21:55:41,385 epoch 3 - iter 891/992 - loss 0.23528113 - time (sec): 19.56 - samples/sec: 7487.53 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-18 21:55:43,685 epoch 3 - iter 990/992 - loss 0.23330811 - time (sec): 21.86 - samples/sec: 7491.34 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-18 21:55:43,736 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-18 21:55:43,736 EPOCH 3 done: loss 0.2337 - lr: 0.000039
|
120 |
+
2023-10-18 21:55:45,582 DEV : loss 0.1749068647623062 - f1-score (micro avg) 0.4182
|
121 |
+
2023-10-18 21:55:45,601 saving best model
|
122 |
+
2023-10-18 21:55:45,640 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-18 21:55:47,867 epoch 4 - iter 99/992 - loss 0.23209216 - time (sec): 2.23 - samples/sec: 7316.80 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-18 21:55:50,006 epoch 4 - iter 198/992 - loss 0.21943860 - time (sec): 4.37 - samples/sec: 7335.23 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-18 21:55:52,141 epoch 4 - iter 297/992 - loss 0.21580522 - time (sec): 6.50 - samples/sec: 7473.64 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-18 21:55:54,086 epoch 4 - iter 396/992 - loss 0.21521306 - time (sec): 8.44 - samples/sec: 7706.14 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-18 21:55:56,286 epoch 4 - iter 495/992 - loss 0.21303400 - time (sec): 10.65 - samples/sec: 7697.26 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-18 21:55:58,585 epoch 4 - iter 594/992 - loss 0.21386872 - time (sec): 12.94 - samples/sec: 7620.66 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-18 21:56:00,843 epoch 4 - iter 693/992 - loss 0.21292105 - time (sec): 15.20 - samples/sec: 7609.58 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-18 21:56:03,054 epoch 4 - iter 792/992 - loss 0.21167609 - time (sec): 17.41 - samples/sec: 7582.95 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-18 21:56:05,288 epoch 4 - iter 891/992 - loss 0.21036360 - time (sec): 19.65 - samples/sec: 7539.23 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-18 21:56:07,573 epoch 4 - iter 990/992 - loss 0.21009866 - time (sec): 21.93 - samples/sec: 7461.11 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-18 21:56:07,624 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-18 21:56:07,625 EPOCH 4 done: loss 0.2099 - lr: 0.000033
|
135 |
+
2023-10-18 21:56:09,454 DEV : loss 0.1589556187391281 - f1-score (micro avg) 0.4302
|
136 |
+
2023-10-18 21:56:09,473 saving best model
|
137 |
+
2023-10-18 21:56:09,507 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-18 21:56:11,681 epoch 5 - iter 99/992 - loss 0.21244283 - time (sec): 2.17 - samples/sec: 7120.21 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-18 21:56:13,909 epoch 5 - iter 198/992 - loss 0.20346866 - time (sec): 4.40 - samples/sec: 7143.14 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-18 21:56:16,179 epoch 5 - iter 297/992 - loss 0.19250101 - time (sec): 6.67 - samples/sec: 7157.94 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-18 21:56:18,394 epoch 5 - iter 396/992 - loss 0.19416248 - time (sec): 8.89 - samples/sec: 7174.94 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-18 21:56:20,709 epoch 5 - iter 495/992 - loss 0.19298598 - time (sec): 11.20 - samples/sec: 7166.12 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-18 21:56:22,990 epoch 5 - iter 594/992 - loss 0.19140411 - time (sec): 13.48 - samples/sec: 7227.29 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-18 21:56:25,289 epoch 5 - iter 693/992 - loss 0.19104653 - time (sec): 15.78 - samples/sec: 7234.47 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-18 21:56:27,581 epoch 5 - iter 792/992 - loss 0.19022986 - time (sec): 18.07 - samples/sec: 7240.62 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-18 21:56:29,785 epoch 5 - iter 891/992 - loss 0.18871481 - time (sec): 20.28 - samples/sec: 7294.24 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-18 21:56:31,990 epoch 5 - iter 990/992 - loss 0.19191013 - time (sec): 22.48 - samples/sec: 7277.88 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-18 21:56:32,037 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-18 21:56:32,037 EPOCH 5 done: loss 0.1918 - lr: 0.000028
|
150 |
+
2023-10-18 21:56:33,887 DEV : loss 0.15180285274982452 - f1-score (micro avg) 0.4646
|
151 |
+
2023-10-18 21:56:33,907 saving best model
|
152 |
+
2023-10-18 21:56:33,942 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-18 21:56:36,213 epoch 6 - iter 99/992 - loss 0.19371930 - time (sec): 2.27 - samples/sec: 7383.02 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-18 21:56:38,443 epoch 6 - iter 198/992 - loss 0.19060230 - time (sec): 4.50 - samples/sec: 7462.91 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-18 21:56:40,617 epoch 6 - iter 297/992 - loss 0.18894797 - time (sec): 6.67 - samples/sec: 7425.76 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-18 21:56:42,855 epoch 6 - iter 396/992 - loss 0.18244944 - time (sec): 8.91 - samples/sec: 7341.36 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-18 21:56:45,105 epoch 6 - iter 495/992 - loss 0.18110119 - time (sec): 11.16 - samples/sec: 7315.36 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-18 21:56:47,397 epoch 6 - iter 594/992 - loss 0.17861193 - time (sec): 13.45 - samples/sec: 7316.73 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-18 21:56:49,686 epoch 6 - iter 693/992 - loss 0.17844836 - time (sec): 15.74 - samples/sec: 7374.44 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-18 21:56:51,924 epoch 6 - iter 792/992 - loss 0.17957471 - time (sec): 17.98 - samples/sec: 7292.61 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-18 21:56:54,153 epoch 6 - iter 891/992 - loss 0.17926821 - time (sec): 20.21 - samples/sec: 7280.88 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-18 21:56:56,391 epoch 6 - iter 990/992 - loss 0.17924101 - time (sec): 22.45 - samples/sec: 7286.45 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-18 21:56:56,441 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-18 21:56:56,441 EPOCH 6 done: loss 0.1799 - lr: 0.000022
|
165 |
+
2023-10-18 21:56:58,301 DEV : loss 0.15175634622573853 - f1-score (micro avg) 0.4636
|
166 |
+
2023-10-18 21:56:58,320 ----------------------------------------------------------------------------------------------------
|
167 |
+
2023-10-18 21:57:00,560 epoch 7 - iter 99/992 - loss 0.17331896 - time (sec): 2.24 - samples/sec: 6979.09 - lr: 0.000022 - momentum: 0.000000
|
168 |
+
2023-10-18 21:57:02,905 epoch 7 - iter 198/992 - loss 0.17621820 - time (sec): 4.58 - samples/sec: 7191.86 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-10-18 21:57:05,242 epoch 7 - iter 297/992 - loss 0.17242925 - time (sec): 6.92 - samples/sec: 7159.28 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-18 21:57:07,579 epoch 7 - iter 396/992 - loss 0.16680316 - time (sec): 9.26 - samples/sec: 7077.62 - lr: 0.000020 - momentum: 0.000000
|
171 |
+
2023-10-18 21:57:09,886 epoch 7 - iter 495/992 - loss 0.16917314 - time (sec): 11.57 - samples/sec: 7049.19 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2023-10-18 21:57:12,114 epoch 7 - iter 594/992 - loss 0.16845160 - time (sec): 13.79 - samples/sec: 7097.60 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-18 21:57:14,364 epoch 7 - iter 693/992 - loss 0.16833284 - time (sec): 16.04 - samples/sec: 7120.30 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2023-10-18 21:57:16,729 epoch 7 - iter 792/992 - loss 0.16816329 - time (sec): 18.41 - samples/sec: 7189.87 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-18 21:57:18,914 epoch 7 - iter 891/992 - loss 0.16870231 - time (sec): 20.59 - samples/sec: 7207.37 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2023-10-18 21:57:21,088 epoch 7 - iter 990/992 - loss 0.17120803 - time (sec): 22.77 - samples/sec: 7184.77 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-18 21:57:21,133 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-18 21:57:21,133 EPOCH 7 done: loss 0.1710 - lr: 0.000017
|
179 |
+
2023-10-18 21:57:23,365 DEV : loss 0.14771050214767456 - f1-score (micro avg) 0.4614
|
180 |
+
2023-10-18 21:57:23,384 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-10-18 21:57:25,576 epoch 8 - iter 99/992 - loss 0.16145510 - time (sec): 2.19 - samples/sec: 8094.49 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-18 21:57:27,798 epoch 8 - iter 198/992 - loss 0.16238181 - time (sec): 4.41 - samples/sec: 7801.61 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-18 21:57:30,048 epoch 8 - iter 297/992 - loss 0.16042643 - time (sec): 6.66 - samples/sec: 7743.08 - lr: 0.000015 - momentum: 0.000000
|
184 |
+
2023-10-18 21:57:32,312 epoch 8 - iter 396/992 - loss 0.16123392 - time (sec): 8.93 - samples/sec: 7716.08 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-10-18 21:57:34,474 epoch 8 - iter 495/992 - loss 0.15882526 - time (sec): 11.09 - samples/sec: 7568.87 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-18 21:57:36,702 epoch 8 - iter 594/992 - loss 0.15852308 - time (sec): 13.32 - samples/sec: 7545.54 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-18 21:57:38,933 epoch 8 - iter 693/992 - loss 0.16090394 - time (sec): 15.55 - samples/sec: 7490.79 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-18 21:57:41,122 epoch 8 - iter 792/992 - loss 0.16162584 - time (sec): 17.74 - samples/sec: 7465.42 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-18 21:57:43,302 epoch 8 - iter 891/992 - loss 0.16350113 - time (sec): 19.92 - samples/sec: 7410.15 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-18 21:57:45,570 epoch 8 - iter 990/992 - loss 0.16534095 - time (sec): 22.19 - samples/sec: 7377.71 - lr: 0.000011 - momentum: 0.000000
|
191 |
+
2023-10-18 21:57:45,617 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-18 21:57:45,617 EPOCH 8 done: loss 0.1653 - lr: 0.000011
|
193 |
+
2023-10-18 21:57:47,461 DEV : loss 0.15022730827331543 - f1-score (micro avg) 0.4734
|
194 |
+
2023-10-18 21:57:47,483 saving best model
|
195 |
+
2023-10-18 21:57:47,522 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-18 21:57:49,845 epoch 9 - iter 99/992 - loss 0.15429276 - time (sec): 2.32 - samples/sec: 7144.31 - lr: 0.000011 - momentum: 0.000000
|
197 |
+
2023-10-18 21:57:52,069 epoch 9 - iter 198/992 - loss 0.15976108 - time (sec): 4.55 - samples/sec: 7389.48 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-10-18 21:57:54,419 epoch 9 - iter 297/992 - loss 0.16814053 - time (sec): 6.90 - samples/sec: 7414.35 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-18 21:57:56,610 epoch 9 - iter 396/992 - loss 0.16893864 - time (sec): 9.09 - samples/sec: 7402.74 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-18 21:57:58,842 epoch 9 - iter 495/992 - loss 0.16480279 - time (sec): 11.32 - samples/sec: 7368.59 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-18 21:58:01,049 epoch 9 - iter 594/992 - loss 0.16380758 - time (sec): 13.53 - samples/sec: 7331.97 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-18 21:58:03,242 epoch 9 - iter 693/992 - loss 0.16219906 - time (sec): 15.72 - samples/sec: 7370.67 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-18 21:58:05,443 epoch 9 - iter 792/992 - loss 0.16449280 - time (sec): 17.92 - samples/sec: 7342.15 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-18 21:58:07,702 epoch 9 - iter 891/992 - loss 0.16241771 - time (sec): 20.18 - samples/sec: 7314.62 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-18 21:58:09,923 epoch 9 - iter 990/992 - loss 0.15995791 - time (sec): 22.40 - samples/sec: 7312.03 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-18 21:58:09,963 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-18 21:58:09,964 EPOCH 9 done: loss 0.1599 - lr: 0.000006
|
208 |
+
2023-10-18 21:58:11,791 DEV : loss 0.15096156299114227 - f1-score (micro avg) 0.4811
|
209 |
+
2023-10-18 21:58:11,811 saving best model
|
210 |
+
2023-10-18 21:58:11,847 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-18 21:58:14,177 epoch 10 - iter 99/992 - loss 0.16010106 - time (sec): 2.33 - samples/sec: 6908.82 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-10-18 21:58:16,389 epoch 10 - iter 198/992 - loss 0.14789645 - time (sec): 4.54 - samples/sec: 7237.38 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-18 21:58:18,701 epoch 10 - iter 297/992 - loss 0.14655674 - time (sec): 6.85 - samples/sec: 7318.07 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-18 21:58:20,992 epoch 10 - iter 396/992 - loss 0.15028578 - time (sec): 9.14 - samples/sec: 7188.41 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-18 21:58:23,161 epoch 10 - iter 495/992 - loss 0.15310770 - time (sec): 11.31 - samples/sec: 7192.41 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-18 21:58:25,426 epoch 10 - iter 594/992 - loss 0.15629795 - time (sec): 13.58 - samples/sec: 7213.73 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-18 21:58:27,654 epoch 10 - iter 693/992 - loss 0.15763389 - time (sec): 15.81 - samples/sec: 7241.31 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-18 21:58:29,889 epoch 10 - iter 792/992 - loss 0.15858926 - time (sec): 18.04 - samples/sec: 7295.51 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-18 21:58:32,062 epoch 10 - iter 891/992 - loss 0.15834786 - time (sec): 20.21 - samples/sec: 7287.22 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-18 21:58:34,265 epoch 10 - iter 990/992 - loss 0.15652090 - time (sec): 22.42 - samples/sec: 7302.97 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-18 21:58:34,312 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-18 21:58:34,312 EPOCH 10 done: loss 0.1566 - lr: 0.000000
|
223 |
+
2023-10-18 21:58:36,128 DEV : loss 0.1495286077260971 - f1-score (micro avg) 0.4881
|
224 |
+
2023-10-18 21:58:36,146 saving best model
|
225 |
+
2023-10-18 21:58:36,204 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-10-18 21:58:36,204 Loading model from best epoch ...
|
227 |
+
2023-10-18 21:58:36,283 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
228 |
+
2023-10-18 21:58:37,756
|
229 |
+
Results:
|
230 |
+
- F-score (micro) 0.542
|
231 |
+
- F-score (macro) 0.3671
|
232 |
+
- Accuracy 0.4099
|
233 |
+
|
234 |
+
By class:
|
235 |
+
precision recall f1-score support
|
236 |
+
|
237 |
+
LOC 0.7039 0.6824 0.6930 655
|
238 |
+
PER 0.2770 0.5067 0.3582 223
|
239 |
+
ORG 0.1212 0.0315 0.0500 127
|
240 |
+
|
241 |
+
micro avg 0.5242 0.5612 0.5420 1005
|
242 |
+
macro avg 0.3674 0.4069 0.3671 1005
|
243 |
+
weighted avg 0.5356 0.5612 0.5375 1005
|
244 |
+
|
245 |
+
2023-10-18 21:58:37,756 ----------------------------------------------------------------------------------------------------
|