Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697673483.46dc0c540dd0.3802.4 +3 -0
- test.tsv +0 -0
- training.log +247 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23a210328680a6bfe55b154dbad6bd53b2eba2c7dbc5dd2e1f18bf7f1ba4855b
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 23:59:01 0.0000 0.5748 0.1842 0.3172 0.0675 0.1113 0.0602
|
3 |
+
2 00:00:02 0.0000 0.1979 0.1775 0.2514 0.4039 0.3099 0.1910
|
4 |
+
3 00:01:02 0.0000 0.1717 0.1713 0.3069 0.4519 0.3656 0.2340
|
5 |
+
4 00:02:03 0.0000 0.1544 0.1667 0.3404 0.4954 0.4035 0.2648
|
6 |
+
5 00:03:04 0.0000 0.1417 0.1812 0.3510 0.5526 0.4293 0.2880
|
7 |
+
6 00:04:05 0.0000 0.1317 0.1711 0.3934 0.5446 0.4568 0.3101
|
8 |
+
7 00:05:06 0.0000 0.1269 0.1817 0.4008 0.5458 0.4622 0.3140
|
9 |
+
8 00:06:06 0.0000 0.1209 0.1852 0.4010 0.5469 0.4627 0.3130
|
10 |
+
9 00:07:07 0.0000 0.1190 0.1872 0.4028 0.5641 0.4700 0.3203
|
11 |
+
10 00:08:07 0.0000 0.1167 0.1891 0.4021 0.5664 0.4703 0.3196
|
runs/events.out.tfevents.1697673483.46dc0c540dd0.3802.4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb6a3ecd5500b1eafa1ec8717975c503651bc775fa2eb282e34df1a0744975a5
|
3 |
+
size 2030580
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 23:58:03,176 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 23:58:03,177 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 23:58:03,177 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 23:58:03,177 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
53 |
+
2023-10-18 23:58:03,177 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 23:58:03,177 Train: 14465 sentences
|
55 |
+
2023-10-18 23:58:03,177 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 23:58:03,177 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 23:58:03,177 Training Params:
|
58 |
+
2023-10-18 23:58:03,177 - learning_rate: "3e-05"
|
59 |
+
2023-10-18 23:58:03,177 - mini_batch_size: "4"
|
60 |
+
2023-10-18 23:58:03,177 - max_epochs: "10"
|
61 |
+
2023-10-18 23:58:03,177 - shuffle: "True"
|
62 |
+
2023-10-18 23:58:03,177 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 23:58:03,177 Plugins:
|
64 |
+
2023-10-18 23:58:03,177 - TensorboardLogger
|
65 |
+
2023-10-18 23:58:03,177 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 23:58:03,177 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 23:58:03,177 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 23:58:03,177 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 23:58:03,177 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 23:58:03,177 Computation:
|
71 |
+
2023-10-18 23:58:03,177 - compute on device: cuda:0
|
72 |
+
2023-10-18 23:58:03,177 - embedding storage: none
|
73 |
+
2023-10-18 23:58:03,177 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 23:58:03,177 Model training base path: "hmbench-letemps/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
75 |
+
2023-10-18 23:58:03,177 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 23:58:03,178 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 23:58:03,178 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 23:58:08,803 epoch 1 - iter 361/3617 - loss 2.36997878 - time (sec): 5.63 - samples/sec: 6809.84 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-18 23:58:14,467 epoch 1 - iter 722/3617 - loss 1.77258874 - time (sec): 11.29 - samples/sec: 6600.74 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-18 23:58:20,123 epoch 1 - iter 1083/3617 - loss 1.31516970 - time (sec): 16.94 - samples/sec: 6619.34 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-18 23:58:25,656 epoch 1 - iter 1444/3617 - loss 1.06703131 - time (sec): 22.48 - samples/sec: 6702.33 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-18 23:58:31,174 epoch 1 - iter 1805/3617 - loss 0.91344974 - time (sec): 28.00 - samples/sec: 6727.80 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-18 23:58:36,755 epoch 1 - iter 2166/3617 - loss 0.81603607 - time (sec): 33.58 - samples/sec: 6675.28 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-18 23:58:42,404 epoch 1 - iter 2527/3617 - loss 0.73338690 - time (sec): 39.23 - samples/sec: 6673.64 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-18 23:58:48,315 epoch 1 - iter 2888/3617 - loss 0.66902349 - time (sec): 45.14 - samples/sec: 6667.42 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-18 23:58:53,645 epoch 1 - iter 3249/3617 - loss 0.61751533 - time (sec): 50.47 - samples/sec: 6734.11 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-18 23:58:58,925 epoch 1 - iter 3610/3617 - loss 0.57566262 - time (sec): 55.75 - samples/sec: 6803.03 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-18 23:58:59,030 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 23:58:59,030 EPOCH 1 done: loss 0.5748 - lr: 0.000030
|
90 |
+
2023-10-18 23:59:01,374 DEV : loss 0.18418805301189423 - f1-score (micro avg) 0.1113
|
91 |
+
2023-10-18 23:59:01,406 saving best model
|
92 |
+
2023-10-18 23:59:01,439 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-18 23:59:07,237 epoch 2 - iter 361/3617 - loss 0.21498018 - time (sec): 5.80 - samples/sec: 6656.89 - lr: 0.000030 - momentum: 0.000000
|
94 |
+
2023-10-18 23:59:12,737 epoch 2 - iter 722/3617 - loss 0.21259486 - time (sec): 11.30 - samples/sec: 6753.82 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-18 23:59:18,069 epoch 2 - iter 1083/3617 - loss 0.21274781 - time (sec): 16.63 - samples/sec: 6784.57 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-18 23:59:23,748 epoch 2 - iter 1444/3617 - loss 0.21183692 - time (sec): 22.31 - samples/sec: 6787.56 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2023-10-18 23:59:29,474 epoch 2 - iter 1805/3617 - loss 0.20972085 - time (sec): 28.03 - samples/sec: 6761.65 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-18 23:59:35,061 epoch 2 - iter 2166/3617 - loss 0.20622936 - time (sec): 33.62 - samples/sec: 6745.79 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-18 23:59:40,816 epoch 2 - iter 2527/3617 - loss 0.20279605 - time (sec): 39.38 - samples/sec: 6723.03 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2023-10-18 23:59:46,581 epoch 2 - iter 2888/3617 - loss 0.20277512 - time (sec): 45.14 - samples/sec: 6715.36 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-18 23:59:52,401 epoch 2 - iter 3249/3617 - loss 0.19959401 - time (sec): 50.96 - samples/sec: 6718.71 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-18 23:59:58,072 epoch 2 - iter 3610/3617 - loss 0.19787867 - time (sec): 56.63 - samples/sec: 6698.97 - lr: 0.000027 - momentum: 0.000000
|
103 |
+
2023-10-18 23:59:58,174 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-18 23:59:58,174 EPOCH 2 done: loss 0.1979 - lr: 0.000027
|
105 |
+
2023-10-19 00:00:02,011 DEV : loss 0.17745766043663025 - f1-score (micro avg) 0.3099
|
106 |
+
2023-10-19 00:00:02,038 saving best model
|
107 |
+
2023-10-19 00:00:02,071 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-19 00:00:07,839 epoch 3 - iter 361/3617 - loss 0.17426994 - time (sec): 5.77 - samples/sec: 6426.35 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-19 00:00:13,678 epoch 3 - iter 722/3617 - loss 0.18366482 - time (sec): 11.61 - samples/sec: 6425.53 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-19 00:00:19,477 epoch 3 - iter 1083/3617 - loss 0.18265066 - time (sec): 17.41 - samples/sec: 6527.22 - lr: 0.000026 - momentum: 0.000000
|
111 |
+
2023-10-19 00:00:25,181 epoch 3 - iter 1444/3617 - loss 0.17944185 - time (sec): 23.11 - samples/sec: 6560.81 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-19 00:00:30,946 epoch 3 - iter 1805/3617 - loss 0.17792967 - time (sec): 28.87 - samples/sec: 6492.08 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-19 00:00:36,733 epoch 3 - iter 2166/3617 - loss 0.17586984 - time (sec): 34.66 - samples/sec: 6505.40 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2023-10-19 00:00:42,495 epoch 3 - iter 2527/3617 - loss 0.17550889 - time (sec): 40.42 - samples/sec: 6522.07 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-19 00:00:47,896 epoch 3 - iter 2888/3617 - loss 0.17374263 - time (sec): 45.82 - samples/sec: 6581.15 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-19 00:00:53,585 epoch 3 - iter 3249/3617 - loss 0.17360638 - time (sec): 51.51 - samples/sec: 6613.70 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2023-10-19 00:00:59,356 epoch 3 - iter 3610/3617 - loss 0.17167513 - time (sec): 57.28 - samples/sec: 6619.96 - lr: 0.000023 - momentum: 0.000000
|
118 |
+
2023-10-19 00:00:59,468 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-19 00:00:59,468 EPOCH 3 done: loss 0.1717 - lr: 0.000023
|
120 |
+
2023-10-19 00:01:02,699 DEV : loss 0.1712975651025772 - f1-score (micro avg) 0.3656
|
121 |
+
2023-10-19 00:01:02,726 saving best model
|
122 |
+
2023-10-19 00:01:02,762 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-19 00:01:08,557 epoch 4 - iter 361/3617 - loss 0.17147098 - time (sec): 5.79 - samples/sec: 6526.12 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-19 00:01:14,379 epoch 4 - iter 722/3617 - loss 0.16727696 - time (sec): 11.62 - samples/sec: 6680.36 - lr: 0.000023 - momentum: 0.000000
|
125 |
+
2023-10-19 00:01:20,265 epoch 4 - iter 1083/3617 - loss 0.15984749 - time (sec): 17.50 - samples/sec: 6583.25 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-19 00:01:25,975 epoch 4 - iter 1444/3617 - loss 0.15449183 - time (sec): 23.21 - samples/sec: 6553.37 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-19 00:01:31,736 epoch 4 - iter 1805/3617 - loss 0.15441485 - time (sec): 28.97 - samples/sec: 6545.80 - lr: 0.000022 - momentum: 0.000000
|
128 |
+
2023-10-19 00:01:37,433 epoch 4 - iter 2166/3617 - loss 0.15394200 - time (sec): 34.67 - samples/sec: 6594.35 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-19 00:01:42,927 epoch 4 - iter 2527/3617 - loss 0.15538219 - time (sec): 40.16 - samples/sec: 6635.54 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-19 00:01:48,596 epoch 4 - iter 2888/3617 - loss 0.15441080 - time (sec): 45.83 - samples/sec: 6624.20 - lr: 0.000021 - momentum: 0.000000
|
131 |
+
2023-10-19 00:01:54,263 epoch 4 - iter 3249/3617 - loss 0.15565106 - time (sec): 51.50 - samples/sec: 6621.64 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-19 00:02:00,045 epoch 4 - iter 3610/3617 - loss 0.15428029 - time (sec): 57.28 - samples/sec: 6620.88 - lr: 0.000020 - momentum: 0.000000
|
133 |
+
2023-10-19 00:02:00,158 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-19 00:02:00,158 EPOCH 4 done: loss 0.1544 - lr: 0.000020
|
135 |
+
2023-10-19 00:02:03,402 DEV : loss 0.16668201982975006 - f1-score (micro avg) 0.4035
|
136 |
+
2023-10-19 00:02:03,430 saving best model
|
137 |
+
2023-10-19 00:02:03,466 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-19 00:02:09,207 epoch 5 - iter 361/3617 - loss 0.12821978 - time (sec): 5.74 - samples/sec: 6756.08 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2023-10-19 00:02:14,914 epoch 5 - iter 722/3617 - loss 0.13135493 - time (sec): 11.45 - samples/sec: 6814.87 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-19 00:02:20,535 epoch 5 - iter 1083/3617 - loss 0.12991170 - time (sec): 17.07 - samples/sec: 6702.45 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-19 00:02:26,234 epoch 5 - iter 1444/3617 - loss 0.13451604 - time (sec): 22.77 - samples/sec: 6671.61 - lr: 0.000019 - momentum: 0.000000
|
142 |
+
2023-10-19 00:02:31,990 epoch 5 - iter 1805/3617 - loss 0.13846108 - time (sec): 28.52 - samples/sec: 6607.20 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-19 00:02:37,703 epoch 5 - iter 2166/3617 - loss 0.13989470 - time (sec): 34.24 - samples/sec: 6625.27 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-19 00:02:43,353 epoch 5 - iter 2527/3617 - loss 0.14171266 - time (sec): 39.89 - samples/sec: 6608.77 - lr: 0.000018 - momentum: 0.000000
|
145 |
+
2023-10-19 00:02:48,838 epoch 5 - iter 2888/3617 - loss 0.14217721 - time (sec): 45.37 - samples/sec: 6650.03 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-19 00:02:54,617 epoch 5 - iter 3249/3617 - loss 0.14146502 - time (sec): 51.15 - samples/sec: 6645.97 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-19 00:03:00,552 epoch 5 - iter 3610/3617 - loss 0.14181052 - time (sec): 57.08 - samples/sec: 6643.68 - lr: 0.000017 - momentum: 0.000000
|
148 |
+
2023-10-19 00:03:00,655 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-19 00:03:00,655 EPOCH 5 done: loss 0.1417 - lr: 0.000017
|
150 |
+
2023-10-19 00:03:04,530 DEV : loss 0.18115580081939697 - f1-score (micro avg) 0.4293
|
151 |
+
2023-10-19 00:03:04,560 saving best model
|
152 |
+
2023-10-19 00:03:04,596 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-19 00:03:10,102 epoch 6 - iter 361/3617 - loss 0.14639806 - time (sec): 5.51 - samples/sec: 6548.38 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-19 00:03:15,855 epoch 6 - iter 722/3617 - loss 0.13502357 - time (sec): 11.26 - samples/sec: 6600.08 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-19 00:03:21,611 epoch 6 - iter 1083/3617 - loss 0.13028085 - time (sec): 17.01 - samples/sec: 6543.90 - lr: 0.000016 - momentum: 0.000000
|
156 |
+
2023-10-19 00:03:27,331 epoch 6 - iter 1444/3617 - loss 0.13278529 - time (sec): 22.74 - samples/sec: 6549.58 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-19 00:03:33,378 epoch 6 - iter 1805/3617 - loss 0.13346841 - time (sec): 28.78 - samples/sec: 6538.15 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-19 00:03:39,165 epoch 6 - iter 2166/3617 - loss 0.13376779 - time (sec): 34.57 - samples/sec: 6533.47 - lr: 0.000015 - momentum: 0.000000
|
159 |
+
2023-10-19 00:03:44,876 epoch 6 - iter 2527/3617 - loss 0.13205667 - time (sec): 40.28 - samples/sec: 6534.50 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-19 00:03:50,571 epoch 6 - iter 2888/3617 - loss 0.13254041 - time (sec): 45.97 - samples/sec: 6528.00 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-19 00:03:56,310 epoch 6 - iter 3249/3617 - loss 0.13140323 - time (sec): 51.71 - samples/sec: 6560.47 - lr: 0.000014 - momentum: 0.000000
|
162 |
+
2023-10-19 00:04:02,061 epoch 6 - iter 3610/3617 - loss 0.13177254 - time (sec): 57.46 - samples/sec: 6601.78 - lr: 0.000013 - momentum: 0.000000
|
163 |
+
2023-10-19 00:04:02,157 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-19 00:04:02,157 EPOCH 6 done: loss 0.1317 - lr: 0.000013
|
165 |
+
2023-10-19 00:04:05,350 DEV : loss 0.17110641300678253 - f1-score (micro avg) 0.4568
|
166 |
+
2023-10-19 00:04:05,378 saving best model
|
167 |
+
2023-10-19 00:04:05,412 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-19 00:04:11,107 epoch 7 - iter 361/3617 - loss 0.12258612 - time (sec): 5.69 - samples/sec: 6561.55 - lr: 0.000013 - momentum: 0.000000
|
169 |
+
2023-10-19 00:04:16,503 epoch 7 - iter 722/3617 - loss 0.12769325 - time (sec): 11.09 - samples/sec: 6782.46 - lr: 0.000013 - momentum: 0.000000
|
170 |
+
2023-10-19 00:04:22,269 epoch 7 - iter 1083/3617 - loss 0.12762667 - time (sec): 16.86 - samples/sec: 6690.09 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-19 00:04:27,932 epoch 7 - iter 1444/3617 - loss 0.13095263 - time (sec): 22.52 - samples/sec: 6642.13 - lr: 0.000012 - momentum: 0.000000
|
172 |
+
2023-10-19 00:04:33,641 epoch 7 - iter 1805/3617 - loss 0.13129488 - time (sec): 28.23 - samples/sec: 6607.53 - lr: 0.000012 - momentum: 0.000000
|
173 |
+
2023-10-19 00:04:39,080 epoch 7 - iter 2166/3617 - loss 0.12959570 - time (sec): 33.67 - samples/sec: 6698.16 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-10-19 00:04:44,807 epoch 7 - iter 2527/3617 - loss 0.12880100 - time (sec): 39.39 - samples/sec: 6687.27 - lr: 0.000011 - momentum: 0.000000
|
175 |
+
2023-10-19 00:04:50,566 epoch 7 - iter 2888/3617 - loss 0.12959427 - time (sec): 45.15 - samples/sec: 6685.86 - lr: 0.000011 - momentum: 0.000000
|
176 |
+
2023-10-19 00:04:56,329 epoch 7 - iter 3249/3617 - loss 0.12780021 - time (sec): 50.92 - samples/sec: 6695.46 - lr: 0.000010 - momentum: 0.000000
|
177 |
+
2023-10-19 00:05:02,113 epoch 7 - iter 3610/3617 - loss 0.12697124 - time (sec): 56.70 - samples/sec: 6685.95 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-10-19 00:05:02,216 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-19 00:05:02,217 EPOCH 7 done: loss 0.1269 - lr: 0.000010
|
180 |
+
2023-10-19 00:05:06,100 DEV : loss 0.1817493438720703 - f1-score (micro avg) 0.4622
|
181 |
+
2023-10-19 00:05:06,128 saving best model
|
182 |
+
2023-10-19 00:05:06,166 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-19 00:05:11,879 epoch 8 - iter 361/3617 - loss 0.11567923 - time (sec): 5.71 - samples/sec: 6721.37 - lr: 0.000010 - momentum: 0.000000
|
184 |
+
2023-10-19 00:05:17,542 epoch 8 - iter 722/3617 - loss 0.11726755 - time (sec): 11.38 - samples/sec: 6656.67 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-10-19 00:05:23,292 epoch 8 - iter 1083/3617 - loss 0.11848005 - time (sec): 17.13 - samples/sec: 6656.08 - lr: 0.000009 - momentum: 0.000000
|
186 |
+
2023-10-19 00:05:29,007 epoch 8 - iter 1444/3617 - loss 0.12044334 - time (sec): 22.84 - samples/sec: 6662.48 - lr: 0.000009 - momentum: 0.000000
|
187 |
+
2023-10-19 00:05:34,761 epoch 8 - iter 1805/3617 - loss 0.12046610 - time (sec): 28.59 - samples/sec: 6689.38 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-10-19 00:05:40,271 epoch 8 - iter 2166/3617 - loss 0.12042788 - time (sec): 34.10 - samples/sec: 6663.89 - lr: 0.000008 - momentum: 0.000000
|
189 |
+
2023-10-19 00:05:45,980 epoch 8 - iter 2527/3617 - loss 0.11893839 - time (sec): 39.81 - samples/sec: 6641.06 - lr: 0.000008 - momentum: 0.000000
|
190 |
+
2023-10-19 00:05:51,718 epoch 8 - iter 2888/3617 - loss 0.11857905 - time (sec): 45.55 - samples/sec: 6625.96 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-10-19 00:05:57,262 epoch 8 - iter 3249/3617 - loss 0.12005226 - time (sec): 51.10 - samples/sec: 6673.14 - lr: 0.000007 - momentum: 0.000000
|
192 |
+
2023-10-19 00:06:02,972 epoch 8 - iter 3610/3617 - loss 0.12081155 - time (sec): 56.81 - samples/sec: 6675.12 - lr: 0.000007 - momentum: 0.000000
|
193 |
+
2023-10-19 00:06:03,084 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-19 00:06:03,084 EPOCH 8 done: loss 0.1209 - lr: 0.000007
|
195 |
+
2023-10-19 00:06:06,316 DEV : loss 0.18522560596466064 - f1-score (micro avg) 0.4627
|
196 |
+
2023-10-19 00:06:06,345 saving best model
|
197 |
+
2023-10-19 00:06:06,383 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-19 00:06:12,202 epoch 9 - iter 361/3617 - loss 0.11578345 - time (sec): 5.82 - samples/sec: 6446.83 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-19 00:06:17,868 epoch 9 - iter 722/3617 - loss 0.11658425 - time (sec): 11.48 - samples/sec: 6471.78 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-19 00:06:23,568 epoch 9 - iter 1083/3617 - loss 0.11552563 - time (sec): 17.18 - samples/sec: 6563.38 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-19 00:06:29,261 epoch 9 - iter 1444/3617 - loss 0.11439846 - time (sec): 22.88 - samples/sec: 6626.62 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2023-10-19 00:06:35,034 epoch 9 - iter 1805/3617 - loss 0.11471886 - time (sec): 28.65 - samples/sec: 6609.74 - lr: 0.000005 - momentum: 0.000000
|
203 |
+
2023-10-19 00:06:40,941 epoch 9 - iter 2166/3617 - loss 0.11616035 - time (sec): 34.56 - samples/sec: 6631.29 - lr: 0.000005 - momentum: 0.000000
|
204 |
+
2023-10-19 00:06:46,712 epoch 9 - iter 2527/3617 - loss 0.11804181 - time (sec): 40.33 - samples/sec: 6595.53 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-10-19 00:06:52,350 epoch 9 - iter 2888/3617 - loss 0.11740974 - time (sec): 45.97 - samples/sec: 6639.79 - lr: 0.000004 - momentum: 0.000000
|
206 |
+
2023-10-19 00:06:57,979 epoch 9 - iter 3249/3617 - loss 0.11893294 - time (sec): 51.60 - samples/sec: 6632.09 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-19 00:07:03,694 epoch 9 - iter 3610/3617 - loss 0.11887323 - time (sec): 57.31 - samples/sec: 6621.10 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-19 00:07:03,798 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-19 00:07:03,798 EPOCH 9 done: loss 0.1190 - lr: 0.000003
|
210 |
+
2023-10-19 00:07:07,005 DEV : loss 0.18721944093704224 - f1-score (micro avg) 0.47
|
211 |
+
2023-10-19 00:07:07,036 saving best model
|
212 |
+
2023-10-19 00:07:07,071 ----------------------------------------------------------------------------------------------------
|
213 |
+
2023-10-19 00:07:12,683 epoch 10 - iter 361/3617 - loss 0.11147538 - time (sec): 5.61 - samples/sec: 6402.00 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-10-19 00:07:18,285 epoch 10 - iter 722/3617 - loss 0.11257207 - time (sec): 11.21 - samples/sec: 6642.89 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-19 00:07:23,989 epoch 10 - iter 1083/3617 - loss 0.11426618 - time (sec): 16.92 - samples/sec: 6584.35 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-19 00:07:29,688 epoch 10 - iter 1444/3617 - loss 0.11495492 - time (sec): 22.62 - samples/sec: 6615.37 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-19 00:07:35,257 epoch 10 - iter 1805/3617 - loss 0.11633593 - time (sec): 28.19 - samples/sec: 6670.70 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-19 00:07:41,001 epoch 10 - iter 2166/3617 - loss 0.11656673 - time (sec): 33.93 - samples/sec: 6654.08 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-19 00:07:46,840 epoch 10 - iter 2527/3617 - loss 0.11556910 - time (sec): 39.77 - samples/sec: 6663.47 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-19 00:07:52,358 epoch 10 - iter 2888/3617 - loss 0.11448283 - time (sec): 45.29 - samples/sec: 6683.36 - lr: 0.000001 - momentum: 0.000000
|
221 |
+
2023-10-19 00:07:58,097 epoch 10 - iter 3249/3617 - loss 0.11653997 - time (sec): 51.03 - samples/sec: 6710.72 - lr: 0.000000 - momentum: 0.000000
|
222 |
+
2023-10-19 00:08:03,672 epoch 10 - iter 3610/3617 - loss 0.11682170 - time (sec): 56.60 - samples/sec: 6699.07 - lr: 0.000000 - momentum: 0.000000
|
223 |
+
2023-10-19 00:08:03,781 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-10-19 00:08:03,782 EPOCH 10 done: loss 0.1167 - lr: 0.000000
|
225 |
+
2023-10-19 00:08:07,665 DEV : loss 0.18911151587963104 - f1-score (micro avg) 0.4703
|
226 |
+
2023-10-19 00:08:07,693 saving best model
|
227 |
+
2023-10-19 00:08:07,758 ----------------------------------------------------------------------------------------------------
|
228 |
+
2023-10-19 00:08:07,758 Loading model from best epoch ...
|
229 |
+
2023-10-19 00:08:07,838 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
230 |
+
2023-10-19 00:08:11,239
|
231 |
+
Results:
|
232 |
+
- F-score (micro) 0.5026
|
233 |
+
- F-score (macro) 0.3266
|
234 |
+
- Accuracy 0.3503
|
235 |
+
|
236 |
+
By class:
|
237 |
+
precision recall f1-score support
|
238 |
+
|
239 |
+
loc 0.5060 0.7140 0.5923 591
|
240 |
+
pers 0.3636 0.4146 0.3874 357
|
241 |
+
org 0.0000 0.0000 0.0000 79
|
242 |
+
|
243 |
+
micro avg 0.4593 0.5550 0.5026 1027
|
244 |
+
macro avg 0.2899 0.3762 0.3266 1027
|
245 |
+
weighted avg 0.4176 0.5550 0.4755 1027
|
246 |
+
|
247 |
+
2023-10-19 00:08:11,239 ----------------------------------------------------------------------------------------------------
|