2023-10-18 23:58:03,176 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,177 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 128) (position_embeddings): Embedding(512, 128) (token_type_embeddings): Embedding(2, 128) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-1): 2 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=128, out_features=128, bias=True) (key): Linear(in_features=128, out_features=128, bias=True) (value): Linear(in_features=128, out_features=128, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=128, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=128, out_features=512, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=512, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=128, out_features=128, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=128, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-18 23:58:03,177 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,177 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator 2023-10-18 23:58:03,177 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,177 Train: 14465 sentences 2023-10-18 23:58:03,177 (train_with_dev=False, train_with_test=False) 2023-10-18 23:58:03,177 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,177 Training Params: 2023-10-18 23:58:03,177 - learning_rate: "3e-05" 2023-10-18 23:58:03,177 - mini_batch_size: "4" 2023-10-18 23:58:03,177 - max_epochs: "10" 2023-10-18 23:58:03,177 - shuffle: "True" 2023-10-18 23:58:03,177 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,177 Plugins: 2023-10-18 23:58:03,177 - TensorboardLogger 2023-10-18 23:58:03,177 - LinearScheduler | warmup_fraction: '0.1' 2023-10-18 23:58:03,177 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,177 Final evaluation on model from best epoch (best-model.pt) 2023-10-18 23:58:03,177 - metric: "('micro avg', 'f1-score')" 2023-10-18 23:58:03,177 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,177 Computation: 2023-10-18 23:58:03,177 - compute on device: cuda:0 2023-10-18 23:58:03,177 - embedding storage: none 2023-10-18 23:58:03,177 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,177 Model training base path: "hmbench-letemps/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2" 2023-10-18 23:58:03,177 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,178 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:03,178 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-18 23:58:08,803 epoch 1 - iter 361/3617 - loss 2.36997878 - time (sec): 5.63 - samples/sec: 6809.84 - lr: 0.000003 - momentum: 0.000000 2023-10-18 23:58:14,467 epoch 1 - iter 722/3617 - loss 1.77258874 - time (sec): 11.29 - samples/sec: 6600.74 - lr: 0.000006 - momentum: 0.000000 2023-10-18 23:58:20,123 epoch 1 - iter 1083/3617 - loss 1.31516970 - time (sec): 16.94 - samples/sec: 6619.34 - lr: 0.000009 - momentum: 0.000000 2023-10-18 23:58:25,656 epoch 1 - iter 1444/3617 - loss 1.06703131 - time (sec): 22.48 - samples/sec: 6702.33 - lr: 0.000012 - momentum: 0.000000 2023-10-18 23:58:31,174 epoch 1 - iter 1805/3617 - loss 0.91344974 - time (sec): 28.00 - samples/sec: 6727.80 - lr: 0.000015 - momentum: 0.000000 2023-10-18 23:58:36,755 epoch 1 - iter 2166/3617 - loss 0.81603607 - time (sec): 33.58 - samples/sec: 6675.28 - lr: 0.000018 - momentum: 0.000000 2023-10-18 23:58:42,404 epoch 1 - iter 2527/3617 - loss 0.73338690 - time (sec): 39.23 - samples/sec: 6673.64 - lr: 0.000021 - momentum: 0.000000 2023-10-18 23:58:48,315 epoch 1 - iter 2888/3617 - loss 0.66902349 - time (sec): 45.14 - samples/sec: 6667.42 - lr: 0.000024 - momentum: 0.000000 2023-10-18 23:58:53,645 epoch 1 - iter 3249/3617 - loss 0.61751533 - time (sec): 50.47 - samples/sec: 6734.11 - lr: 0.000027 - momentum: 0.000000 2023-10-18 23:58:58,925 epoch 1 - iter 3610/3617 - loss 0.57566262 - time (sec): 55.75 - samples/sec: 6803.03 - lr: 0.000030 - momentum: 0.000000 2023-10-18 23:58:59,030 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:58:59,030 EPOCH 1 done: loss 0.5748 - lr: 0.000030 2023-10-18 23:59:01,374 DEV : loss 0.18418805301189423 - f1-score (micro avg) 0.1113 2023-10-18 23:59:01,406 saving best model 2023-10-18 23:59:01,439 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:59:07,237 epoch 2 - iter 361/3617 - loss 0.21498018 - time (sec): 5.80 - samples/sec: 6656.89 - lr: 0.000030 - momentum: 0.000000 2023-10-18 23:59:12,737 epoch 2 - iter 722/3617 - loss 0.21259486 - time (sec): 11.30 - samples/sec: 6753.82 - lr: 0.000029 - momentum: 0.000000 2023-10-18 23:59:18,069 epoch 2 - iter 1083/3617 - loss 0.21274781 - time (sec): 16.63 - samples/sec: 6784.57 - lr: 0.000029 - momentum: 0.000000 2023-10-18 23:59:23,748 epoch 2 - iter 1444/3617 - loss 0.21183692 - time (sec): 22.31 - samples/sec: 6787.56 - lr: 0.000029 - momentum: 0.000000 2023-10-18 23:59:29,474 epoch 2 - iter 1805/3617 - loss 0.20972085 - time (sec): 28.03 - samples/sec: 6761.65 - lr: 0.000028 - momentum: 0.000000 2023-10-18 23:59:35,061 epoch 2 - iter 2166/3617 - loss 0.20622936 - time (sec): 33.62 - samples/sec: 6745.79 - lr: 0.000028 - momentum: 0.000000 2023-10-18 23:59:40,816 epoch 2 - iter 2527/3617 - loss 0.20279605 - time (sec): 39.38 - samples/sec: 6723.03 - lr: 0.000028 - momentum: 0.000000 2023-10-18 23:59:46,581 epoch 2 - iter 2888/3617 - loss 0.20277512 - time (sec): 45.14 - samples/sec: 6715.36 - lr: 0.000027 - momentum: 0.000000 2023-10-18 23:59:52,401 epoch 2 - iter 3249/3617 - loss 0.19959401 - time (sec): 50.96 - samples/sec: 6718.71 - lr: 0.000027 - momentum: 0.000000 2023-10-18 23:59:58,072 epoch 2 - iter 3610/3617 - loss 0.19787867 - time (sec): 56.63 - samples/sec: 6698.97 - lr: 0.000027 - momentum: 0.000000 2023-10-18 23:59:58,174 ---------------------------------------------------------------------------------------------------- 2023-10-18 23:59:58,174 EPOCH 2 done: loss 0.1979 - lr: 0.000027 2023-10-19 00:00:02,011 DEV : loss 0.17745766043663025 - f1-score (micro avg) 0.3099 2023-10-19 00:00:02,038 saving best model 2023-10-19 00:00:02,071 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:00:07,839 epoch 3 - iter 361/3617 - loss 0.17426994 - time (sec): 5.77 - samples/sec: 6426.35 - lr: 0.000026 - momentum: 0.000000 2023-10-19 00:00:13,678 epoch 3 - iter 722/3617 - loss 0.18366482 - time (sec): 11.61 - samples/sec: 6425.53 - lr: 0.000026 - momentum: 0.000000 2023-10-19 00:00:19,477 epoch 3 - iter 1083/3617 - loss 0.18265066 - time (sec): 17.41 - samples/sec: 6527.22 - lr: 0.000026 - momentum: 0.000000 2023-10-19 00:00:25,181 epoch 3 - iter 1444/3617 - loss 0.17944185 - time (sec): 23.11 - samples/sec: 6560.81 - lr: 0.000025 - momentum: 0.000000 2023-10-19 00:00:30,946 epoch 3 - iter 1805/3617 - loss 0.17792967 - time (sec): 28.87 - samples/sec: 6492.08 - lr: 0.000025 - momentum: 0.000000 2023-10-19 00:00:36,733 epoch 3 - iter 2166/3617 - loss 0.17586984 - time (sec): 34.66 - samples/sec: 6505.40 - lr: 0.000025 - momentum: 0.000000 2023-10-19 00:00:42,495 epoch 3 - iter 2527/3617 - loss 0.17550889 - time (sec): 40.42 - samples/sec: 6522.07 - lr: 0.000024 - momentum: 0.000000 2023-10-19 00:00:47,896 epoch 3 - iter 2888/3617 - loss 0.17374263 - time (sec): 45.82 - samples/sec: 6581.15 - lr: 0.000024 - momentum: 0.000000 2023-10-19 00:00:53,585 epoch 3 - iter 3249/3617 - loss 0.17360638 - time (sec): 51.51 - samples/sec: 6613.70 - lr: 0.000024 - momentum: 0.000000 2023-10-19 00:00:59,356 epoch 3 - iter 3610/3617 - loss 0.17167513 - time (sec): 57.28 - samples/sec: 6619.96 - lr: 0.000023 - momentum: 0.000000 2023-10-19 00:00:59,468 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:00:59,468 EPOCH 3 done: loss 0.1717 - lr: 0.000023 2023-10-19 00:01:02,699 DEV : loss 0.1712975651025772 - f1-score (micro avg) 0.3656 2023-10-19 00:01:02,726 saving best model 2023-10-19 00:01:02,762 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:01:08,557 epoch 4 - iter 361/3617 - loss 0.17147098 - time (sec): 5.79 - samples/sec: 6526.12 - lr: 0.000023 - momentum: 0.000000 2023-10-19 00:01:14,379 epoch 4 - iter 722/3617 - loss 0.16727696 - time (sec): 11.62 - samples/sec: 6680.36 - lr: 0.000023 - momentum: 0.000000 2023-10-19 00:01:20,265 epoch 4 - iter 1083/3617 - loss 0.15984749 - time (sec): 17.50 - samples/sec: 6583.25 - lr: 0.000022 - momentum: 0.000000 2023-10-19 00:01:25,975 epoch 4 - iter 1444/3617 - loss 0.15449183 - time (sec): 23.21 - samples/sec: 6553.37 - lr: 0.000022 - momentum: 0.000000 2023-10-19 00:01:31,736 epoch 4 - iter 1805/3617 - loss 0.15441485 - time (sec): 28.97 - samples/sec: 6545.80 - lr: 0.000022 - momentum: 0.000000 2023-10-19 00:01:37,433 epoch 4 - iter 2166/3617 - loss 0.15394200 - time (sec): 34.67 - samples/sec: 6594.35 - lr: 0.000021 - momentum: 0.000000 2023-10-19 00:01:42,927 epoch 4 - iter 2527/3617 - loss 0.15538219 - time (sec): 40.16 - samples/sec: 6635.54 - lr: 0.000021 - momentum: 0.000000 2023-10-19 00:01:48,596 epoch 4 - iter 2888/3617 - loss 0.15441080 - time (sec): 45.83 - samples/sec: 6624.20 - lr: 0.000021 - momentum: 0.000000 2023-10-19 00:01:54,263 epoch 4 - iter 3249/3617 - loss 0.15565106 - time (sec): 51.50 - samples/sec: 6621.64 - lr: 0.000020 - momentum: 0.000000 2023-10-19 00:02:00,045 epoch 4 - iter 3610/3617 - loss 0.15428029 - time (sec): 57.28 - samples/sec: 6620.88 - lr: 0.000020 - momentum: 0.000000 2023-10-19 00:02:00,158 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:02:00,158 EPOCH 4 done: loss 0.1544 - lr: 0.000020 2023-10-19 00:02:03,402 DEV : loss 0.16668201982975006 - f1-score (micro avg) 0.4035 2023-10-19 00:02:03,430 saving best model 2023-10-19 00:02:03,466 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:02:09,207 epoch 5 - iter 361/3617 - loss 0.12821978 - time (sec): 5.74 - samples/sec: 6756.08 - lr: 0.000020 - momentum: 0.000000 2023-10-19 00:02:14,914 epoch 5 - iter 722/3617 - loss 0.13135493 - time (sec): 11.45 - samples/sec: 6814.87 - lr: 0.000019 - momentum: 0.000000 2023-10-19 00:02:20,535 epoch 5 - iter 1083/3617 - loss 0.12991170 - time (sec): 17.07 - samples/sec: 6702.45 - lr: 0.000019 - momentum: 0.000000 2023-10-19 00:02:26,234 epoch 5 - iter 1444/3617 - loss 0.13451604 - time (sec): 22.77 - samples/sec: 6671.61 - lr: 0.000019 - momentum: 0.000000 2023-10-19 00:02:31,990 epoch 5 - iter 1805/3617 - loss 0.13846108 - time (sec): 28.52 - samples/sec: 6607.20 - lr: 0.000018 - momentum: 0.000000 2023-10-19 00:02:37,703 epoch 5 - iter 2166/3617 - loss 0.13989470 - time (sec): 34.24 - samples/sec: 6625.27 - lr: 0.000018 - momentum: 0.000000 2023-10-19 00:02:43,353 epoch 5 - iter 2527/3617 - loss 0.14171266 - time (sec): 39.89 - samples/sec: 6608.77 - lr: 0.000018 - momentum: 0.000000 2023-10-19 00:02:48,838 epoch 5 - iter 2888/3617 - loss 0.14217721 - time (sec): 45.37 - samples/sec: 6650.03 - lr: 0.000017 - momentum: 0.000000 2023-10-19 00:02:54,617 epoch 5 - iter 3249/3617 - loss 0.14146502 - time (sec): 51.15 - samples/sec: 6645.97 - lr: 0.000017 - momentum: 0.000000 2023-10-19 00:03:00,552 epoch 5 - iter 3610/3617 - loss 0.14181052 - time (sec): 57.08 - samples/sec: 6643.68 - lr: 0.000017 - momentum: 0.000000 2023-10-19 00:03:00,655 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:03:00,655 EPOCH 5 done: loss 0.1417 - lr: 0.000017 2023-10-19 00:03:04,530 DEV : loss 0.18115580081939697 - f1-score (micro avg) 0.4293 2023-10-19 00:03:04,560 saving best model 2023-10-19 00:03:04,596 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:03:10,102 epoch 6 - iter 361/3617 - loss 0.14639806 - time (sec): 5.51 - samples/sec: 6548.38 - lr: 0.000016 - momentum: 0.000000 2023-10-19 00:03:15,855 epoch 6 - iter 722/3617 - loss 0.13502357 - time (sec): 11.26 - samples/sec: 6600.08 - lr: 0.000016 - momentum: 0.000000 2023-10-19 00:03:21,611 epoch 6 - iter 1083/3617 - loss 0.13028085 - time (sec): 17.01 - samples/sec: 6543.90 - lr: 0.000016 - momentum: 0.000000 2023-10-19 00:03:27,331 epoch 6 - iter 1444/3617 - loss 0.13278529 - time (sec): 22.74 - samples/sec: 6549.58 - lr: 0.000015 - momentum: 0.000000 2023-10-19 00:03:33,378 epoch 6 - iter 1805/3617 - loss 0.13346841 - time (sec): 28.78 - samples/sec: 6538.15 - lr: 0.000015 - momentum: 0.000000 2023-10-19 00:03:39,165 epoch 6 - iter 2166/3617 - loss 0.13376779 - time (sec): 34.57 - samples/sec: 6533.47 - lr: 0.000015 - momentum: 0.000000 2023-10-19 00:03:44,876 epoch 6 - iter 2527/3617 - loss 0.13205667 - time (sec): 40.28 - samples/sec: 6534.50 - lr: 0.000014 - momentum: 0.000000 2023-10-19 00:03:50,571 epoch 6 - iter 2888/3617 - loss 0.13254041 - time (sec): 45.97 - samples/sec: 6528.00 - lr: 0.000014 - momentum: 0.000000 2023-10-19 00:03:56,310 epoch 6 - iter 3249/3617 - loss 0.13140323 - time (sec): 51.71 - samples/sec: 6560.47 - lr: 0.000014 - momentum: 0.000000 2023-10-19 00:04:02,061 epoch 6 - iter 3610/3617 - loss 0.13177254 - time (sec): 57.46 - samples/sec: 6601.78 - lr: 0.000013 - momentum: 0.000000 2023-10-19 00:04:02,157 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:04:02,157 EPOCH 6 done: loss 0.1317 - lr: 0.000013 2023-10-19 00:04:05,350 DEV : loss 0.17110641300678253 - f1-score (micro avg) 0.4568 2023-10-19 00:04:05,378 saving best model 2023-10-19 00:04:05,412 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:04:11,107 epoch 7 - iter 361/3617 - loss 0.12258612 - time (sec): 5.69 - samples/sec: 6561.55 - lr: 0.000013 - momentum: 0.000000 2023-10-19 00:04:16,503 epoch 7 - iter 722/3617 - loss 0.12769325 - time (sec): 11.09 - samples/sec: 6782.46 - lr: 0.000013 - momentum: 0.000000 2023-10-19 00:04:22,269 epoch 7 - iter 1083/3617 - loss 0.12762667 - time (sec): 16.86 - samples/sec: 6690.09 - lr: 0.000012 - momentum: 0.000000 2023-10-19 00:04:27,932 epoch 7 - iter 1444/3617 - loss 0.13095263 - time (sec): 22.52 - samples/sec: 6642.13 - lr: 0.000012 - momentum: 0.000000 2023-10-19 00:04:33,641 epoch 7 - iter 1805/3617 - loss 0.13129488 - time (sec): 28.23 - samples/sec: 6607.53 - lr: 0.000012 - momentum: 0.000000 2023-10-19 00:04:39,080 epoch 7 - iter 2166/3617 - loss 0.12959570 - time (sec): 33.67 - samples/sec: 6698.16 - lr: 0.000011 - momentum: 0.000000 2023-10-19 00:04:44,807 epoch 7 - iter 2527/3617 - loss 0.12880100 - time (sec): 39.39 - samples/sec: 6687.27 - lr: 0.000011 - momentum: 0.000000 2023-10-19 00:04:50,566 epoch 7 - iter 2888/3617 - loss 0.12959427 - time (sec): 45.15 - samples/sec: 6685.86 - lr: 0.000011 - momentum: 0.000000 2023-10-19 00:04:56,329 epoch 7 - iter 3249/3617 - loss 0.12780021 - time (sec): 50.92 - samples/sec: 6695.46 - lr: 0.000010 - momentum: 0.000000 2023-10-19 00:05:02,113 epoch 7 - iter 3610/3617 - loss 0.12697124 - time (sec): 56.70 - samples/sec: 6685.95 - lr: 0.000010 - momentum: 0.000000 2023-10-19 00:05:02,216 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:05:02,217 EPOCH 7 done: loss 0.1269 - lr: 0.000010 2023-10-19 00:05:06,100 DEV : loss 0.1817493438720703 - f1-score (micro avg) 0.4622 2023-10-19 00:05:06,128 saving best model 2023-10-19 00:05:06,166 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:05:11,879 epoch 8 - iter 361/3617 - loss 0.11567923 - time (sec): 5.71 - samples/sec: 6721.37 - lr: 0.000010 - momentum: 0.000000 2023-10-19 00:05:17,542 epoch 8 - iter 722/3617 - loss 0.11726755 - time (sec): 11.38 - samples/sec: 6656.67 - lr: 0.000009 - momentum: 0.000000 2023-10-19 00:05:23,292 epoch 8 - iter 1083/3617 - loss 0.11848005 - time (sec): 17.13 - samples/sec: 6656.08 - lr: 0.000009 - momentum: 0.000000 2023-10-19 00:05:29,007 epoch 8 - iter 1444/3617 - loss 0.12044334 - time (sec): 22.84 - samples/sec: 6662.48 - lr: 0.000009 - momentum: 0.000000 2023-10-19 00:05:34,761 epoch 8 - iter 1805/3617 - loss 0.12046610 - time (sec): 28.59 - samples/sec: 6689.38 - lr: 0.000008 - momentum: 0.000000 2023-10-19 00:05:40,271 epoch 8 - iter 2166/3617 - loss 0.12042788 - time (sec): 34.10 - samples/sec: 6663.89 - lr: 0.000008 - momentum: 0.000000 2023-10-19 00:05:45,980 epoch 8 - iter 2527/3617 - loss 0.11893839 - time (sec): 39.81 - samples/sec: 6641.06 - lr: 0.000008 - momentum: 0.000000 2023-10-19 00:05:51,718 epoch 8 - iter 2888/3617 - loss 0.11857905 - time (sec): 45.55 - samples/sec: 6625.96 - lr: 0.000007 - momentum: 0.000000 2023-10-19 00:05:57,262 epoch 8 - iter 3249/3617 - loss 0.12005226 - time (sec): 51.10 - samples/sec: 6673.14 - lr: 0.000007 - momentum: 0.000000 2023-10-19 00:06:02,972 epoch 8 - iter 3610/3617 - loss 0.12081155 - time (sec): 56.81 - samples/sec: 6675.12 - lr: 0.000007 - momentum: 0.000000 2023-10-19 00:06:03,084 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:06:03,084 EPOCH 8 done: loss 0.1209 - lr: 0.000007 2023-10-19 00:06:06,316 DEV : loss 0.18522560596466064 - f1-score (micro avg) 0.4627 2023-10-19 00:06:06,345 saving best model 2023-10-19 00:06:06,383 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:06:12,202 epoch 9 - iter 361/3617 - loss 0.11578345 - time (sec): 5.82 - samples/sec: 6446.83 - lr: 0.000006 - momentum: 0.000000 2023-10-19 00:06:17,868 epoch 9 - iter 722/3617 - loss 0.11658425 - time (sec): 11.48 - samples/sec: 6471.78 - lr: 0.000006 - momentum: 0.000000 2023-10-19 00:06:23,568 epoch 9 - iter 1083/3617 - loss 0.11552563 - time (sec): 17.18 - samples/sec: 6563.38 - lr: 0.000006 - momentum: 0.000000 2023-10-19 00:06:29,261 epoch 9 - iter 1444/3617 - loss 0.11439846 - time (sec): 22.88 - samples/sec: 6626.62 - lr: 0.000005 - momentum: 0.000000 2023-10-19 00:06:35,034 epoch 9 - iter 1805/3617 - loss 0.11471886 - time (sec): 28.65 - samples/sec: 6609.74 - lr: 0.000005 - momentum: 0.000000 2023-10-19 00:06:40,941 epoch 9 - iter 2166/3617 - loss 0.11616035 - time (sec): 34.56 - samples/sec: 6631.29 - lr: 0.000005 - momentum: 0.000000 2023-10-19 00:06:46,712 epoch 9 - iter 2527/3617 - loss 0.11804181 - time (sec): 40.33 - samples/sec: 6595.53 - lr: 0.000004 - momentum: 0.000000 2023-10-19 00:06:52,350 epoch 9 - iter 2888/3617 - loss 0.11740974 - time (sec): 45.97 - samples/sec: 6639.79 - lr: 0.000004 - momentum: 0.000000 2023-10-19 00:06:57,979 epoch 9 - iter 3249/3617 - loss 0.11893294 - time (sec): 51.60 - samples/sec: 6632.09 - lr: 0.000004 - momentum: 0.000000 2023-10-19 00:07:03,694 epoch 9 - iter 3610/3617 - loss 0.11887323 - time (sec): 57.31 - samples/sec: 6621.10 - lr: 0.000003 - momentum: 0.000000 2023-10-19 00:07:03,798 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:07:03,798 EPOCH 9 done: loss 0.1190 - lr: 0.000003 2023-10-19 00:07:07,005 DEV : loss 0.18721944093704224 - f1-score (micro avg) 0.47 2023-10-19 00:07:07,036 saving best model 2023-10-19 00:07:07,071 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:07:12,683 epoch 10 - iter 361/3617 - loss 0.11147538 - time (sec): 5.61 - samples/sec: 6402.00 - lr: 0.000003 - momentum: 0.000000 2023-10-19 00:07:18,285 epoch 10 - iter 722/3617 - loss 0.11257207 - time (sec): 11.21 - samples/sec: 6642.89 - lr: 0.000003 - momentum: 0.000000 2023-10-19 00:07:23,989 epoch 10 - iter 1083/3617 - loss 0.11426618 - time (sec): 16.92 - samples/sec: 6584.35 - lr: 0.000002 - momentum: 0.000000 2023-10-19 00:07:29,688 epoch 10 - iter 1444/3617 - loss 0.11495492 - time (sec): 22.62 - samples/sec: 6615.37 - lr: 0.000002 - momentum: 0.000000 2023-10-19 00:07:35,257 epoch 10 - iter 1805/3617 - loss 0.11633593 - time (sec): 28.19 - samples/sec: 6670.70 - lr: 0.000002 - momentum: 0.000000 2023-10-19 00:07:41,001 epoch 10 - iter 2166/3617 - loss 0.11656673 - time (sec): 33.93 - samples/sec: 6654.08 - lr: 0.000001 - momentum: 0.000000 2023-10-19 00:07:46,840 epoch 10 - iter 2527/3617 - loss 0.11556910 - time (sec): 39.77 - samples/sec: 6663.47 - lr: 0.000001 - momentum: 0.000000 2023-10-19 00:07:52,358 epoch 10 - iter 2888/3617 - loss 0.11448283 - time (sec): 45.29 - samples/sec: 6683.36 - lr: 0.000001 - momentum: 0.000000 2023-10-19 00:07:58,097 epoch 10 - iter 3249/3617 - loss 0.11653997 - time (sec): 51.03 - samples/sec: 6710.72 - lr: 0.000000 - momentum: 0.000000 2023-10-19 00:08:03,672 epoch 10 - iter 3610/3617 - loss 0.11682170 - time (sec): 56.60 - samples/sec: 6699.07 - lr: 0.000000 - momentum: 0.000000 2023-10-19 00:08:03,781 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:08:03,782 EPOCH 10 done: loss 0.1167 - lr: 0.000000 2023-10-19 00:08:07,665 DEV : loss 0.18911151587963104 - f1-score (micro avg) 0.4703 2023-10-19 00:08:07,693 saving best model 2023-10-19 00:08:07,758 ---------------------------------------------------------------------------------------------------- 2023-10-19 00:08:07,758 Loading model from best epoch ... 2023-10-19 00:08:07,838 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org 2023-10-19 00:08:11,239 Results: - F-score (micro) 0.5026 - F-score (macro) 0.3266 - Accuracy 0.3503 By class: precision recall f1-score support loc 0.5060 0.7140 0.5923 591 pers 0.3636 0.4146 0.3874 357 org 0.0000 0.0000 0.0000 79 micro avg 0.4593 0.5550 0.5026 1027 macro avg 0.2899 0.3762 0.3266 1027 weighted avg 0.4176 0.5550 0.4755 1027 2023-10-19 00:08:11,239 ----------------------------------------------------------------------------------------------------