Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697564302.3ae7c61396a7.1160.8 +3 -0
- test.tsv +0 -0
- training.log +239 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95e8ba7197a5f4133640e87ded77f989c4689515817f5538fcb0752914941876
|
3 |
+
size 440954373
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 17:43:03 0.0000 0.4589 0.1235 0.2144 0.5076 0.3015 0.1777
|
3 |
+
2 17:47:48 0.0000 0.1533 0.1629 0.2322 0.6420 0.3410 0.2062
|
4 |
+
3 17:52:31 0.0000 0.1085 0.2198 0.2408 0.6231 0.3474 0.2116
|
5 |
+
4 17:57:21 0.0000 0.0813 0.2744 0.3187 0.5492 0.4033 0.2539
|
6 |
+
5 18:02:12 0.0000 0.0546 0.2997 0.2917 0.5795 0.3881 0.2425
|
7 |
+
6 18:07:01 0.0000 0.0389 0.3478 0.3020 0.6080 0.4035 0.2542
|
8 |
+
7 18:11:52 0.0000 0.0285 0.4449 0.2785 0.5966 0.3797 0.2353
|
9 |
+
8 18:16:40 0.0000 0.0211 0.5216 0.2629 0.6288 0.3707 0.2285
|
10 |
+
9 18:21:25 0.0000 0.0135 0.5246 0.2742 0.6117 0.3787 0.2344
|
11 |
+
10 18:26:14 0.0000 0.0107 0.5315 0.2765 0.6080 0.3801 0.2355
|
runs/events.out.tfevents.1697564302.3ae7c61396a7.1160.8
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:004ec79be9de67dbeeac171cb76c287a2406d754dde024c3e161fae3dadb9047
|
3 |
+
size 1464420
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 17:38:22,631 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 17:38:22,633 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 17:38:22,633 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 17:38:22,633 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
|
49 |
+
2023-10-17 17:38:22,633 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 17:38:22,633 Train: 20847 sentences
|
51 |
+
2023-10-17 17:38:22,634 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 17:38:22,634 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 17:38:22,634 Training Params:
|
54 |
+
2023-10-17 17:38:22,634 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 17:38:22,634 - mini_batch_size: "8"
|
56 |
+
2023-10-17 17:38:22,634 - max_epochs: "10"
|
57 |
+
2023-10-17 17:38:22,634 - shuffle: "True"
|
58 |
+
2023-10-17 17:38:22,634 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 17:38:22,634 Plugins:
|
60 |
+
2023-10-17 17:38:22,634 - TensorboardLogger
|
61 |
+
2023-10-17 17:38:22,634 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 17:38:22,634 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 17:38:22,634 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 17:38:22,634 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 17:38:22,634 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 17:38:22,635 Computation:
|
67 |
+
2023-10-17 17:38:22,635 - compute on device: cuda:0
|
68 |
+
2023-10-17 17:38:22,635 - embedding storage: none
|
69 |
+
2023-10-17 17:38:22,635 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 17:38:22,635 Model training base path: "hmbench-newseye/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
71 |
+
2023-10-17 17:38:22,635 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 17:38:22,635 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 17:38:22,635 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 17:38:49,992 epoch 1 - iter 260/2606 - loss 2.16108750 - time (sec): 27.36 - samples/sec: 1370.93 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 17:39:16,294 epoch 1 - iter 520/2606 - loss 1.30692459 - time (sec): 53.66 - samples/sec: 1390.98 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 17:39:43,218 epoch 1 - iter 780/2606 - loss 0.99754433 - time (sec): 80.58 - samples/sec: 1367.60 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 17:40:10,453 epoch 1 - iter 1040/2606 - loss 0.82453976 - time (sec): 107.82 - samples/sec: 1349.01 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 17:40:36,352 epoch 1 - iter 1300/2606 - loss 0.71369382 - time (sec): 133.72 - samples/sec: 1341.33 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 17:41:03,213 epoch 1 - iter 1560/2606 - loss 0.62993344 - time (sec): 160.58 - samples/sec: 1349.33 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 17:41:31,274 epoch 1 - iter 1820/2606 - loss 0.57154390 - time (sec): 188.64 - samples/sec: 1337.61 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 17:41:58,975 epoch 1 - iter 2080/2606 - loss 0.52820388 - time (sec): 216.34 - samples/sec: 1339.02 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 17:42:25,833 epoch 1 - iter 2340/2606 - loss 0.49230602 - time (sec): 243.20 - samples/sec: 1335.50 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 17:42:54,842 epoch 1 - iter 2600/2606 - loss 0.45946927 - time (sec): 272.20 - samples/sec: 1347.07 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-17 17:42:55,398 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 17:42:55,399 EPOCH 1 done: loss 0.4589 - lr: 0.000030
|
86 |
+
2023-10-17 17:43:03,287 DEV : loss 0.12348709255456924 - f1-score (micro avg) 0.3015
|
87 |
+
2023-10-17 17:43:03,342 saving best model
|
88 |
+
2023-10-17 17:43:03,884 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 17:43:31,177 epoch 2 - iter 260/2606 - loss 0.17303029 - time (sec): 27.29 - samples/sec: 1347.32 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 17:43:59,525 epoch 2 - iter 520/2606 - loss 0.16886574 - time (sec): 55.64 - samples/sec: 1373.29 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 17:44:26,379 epoch 2 - iter 780/2606 - loss 0.16483756 - time (sec): 82.49 - samples/sec: 1359.54 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 17:44:53,079 epoch 2 - iter 1040/2606 - loss 0.16595272 - time (sec): 109.19 - samples/sec: 1354.15 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 17:45:19,612 epoch 2 - iter 1300/2606 - loss 0.16465462 - time (sec): 135.73 - samples/sec: 1346.09 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 17:45:46,866 epoch 2 - iter 1560/2606 - loss 0.16186852 - time (sec): 162.98 - samples/sec: 1348.08 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 17:46:14,295 epoch 2 - iter 1820/2606 - loss 0.16153027 - time (sec): 190.41 - samples/sec: 1335.51 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 17:46:41,254 epoch 2 - iter 2080/2606 - loss 0.15817180 - time (sec): 217.37 - samples/sec: 1341.88 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 17:47:07,690 epoch 2 - iter 2340/2606 - loss 0.15541969 - time (sec): 243.80 - samples/sec: 1349.13 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 17:47:35,914 epoch 2 - iter 2600/2606 - loss 0.15324901 - time (sec): 272.03 - samples/sec: 1348.38 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 17:47:36,492 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 17:47:36,492 EPOCH 2 done: loss 0.1533 - lr: 0.000027
|
101 |
+
2023-10-17 17:47:48,737 DEV : loss 0.16292980313301086 - f1-score (micro avg) 0.341
|
102 |
+
2023-10-17 17:47:48,800 saving best model
|
103 |
+
2023-10-17 17:47:50,156 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 17:48:16,842 epoch 3 - iter 260/2606 - loss 0.11265805 - time (sec): 26.68 - samples/sec: 1334.85 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 17:48:44,542 epoch 3 - iter 520/2606 - loss 0.10845921 - time (sec): 54.38 - samples/sec: 1343.73 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 17:49:11,468 epoch 3 - iter 780/2606 - loss 0.10959502 - time (sec): 81.31 - samples/sec: 1348.75 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 17:49:37,863 epoch 3 - iter 1040/2606 - loss 0.11240173 - time (sec): 107.70 - samples/sec: 1348.81 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 17:50:04,462 epoch 3 - iter 1300/2606 - loss 0.11114369 - time (sec): 134.30 - samples/sec: 1352.04 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 17:50:32,138 epoch 3 - iter 1560/2606 - loss 0.10929810 - time (sec): 161.98 - samples/sec: 1364.81 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 17:50:57,682 epoch 3 - iter 1820/2606 - loss 0.11045895 - time (sec): 187.52 - samples/sec: 1371.97 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 17:51:24,187 epoch 3 - iter 2080/2606 - loss 0.11033176 - time (sec): 214.03 - samples/sec: 1378.25 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 17:51:49,493 epoch 3 - iter 2340/2606 - loss 0.10971803 - time (sec): 239.33 - samples/sec: 1370.69 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 17:52:17,879 epoch 3 - iter 2600/2606 - loss 0.10861513 - time (sec): 267.72 - samples/sec: 1370.17 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 17:52:18,429 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 17:52:18,429 EPOCH 3 done: loss 0.1085 - lr: 0.000023
|
116 |
+
2023-10-17 17:52:31,403 DEV : loss 0.21983903646469116 - f1-score (micro avg) 0.3474
|
117 |
+
2023-10-17 17:52:31,463 saving best model
|
118 |
+
2023-10-17 17:52:32,872 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 17:53:00,390 epoch 4 - iter 260/2606 - loss 0.07713242 - time (sec): 27.51 - samples/sec: 1346.41 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 17:53:28,664 epoch 4 - iter 520/2606 - loss 0.08561030 - time (sec): 55.79 - samples/sec: 1351.93 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-10-17 17:53:56,211 epoch 4 - iter 780/2606 - loss 0.08498077 - time (sec): 83.33 - samples/sec: 1326.24 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 17:54:22,655 epoch 4 - iter 1040/2606 - loss 0.08337658 - time (sec): 109.78 - samples/sec: 1336.06 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 17:54:49,664 epoch 4 - iter 1300/2606 - loss 0.08143883 - time (sec): 136.79 - samples/sec: 1339.71 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-17 17:55:16,666 epoch 4 - iter 1560/2606 - loss 0.08262716 - time (sec): 163.79 - samples/sec: 1336.65 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 17:55:44,033 epoch 4 - iter 1820/2606 - loss 0.08312524 - time (sec): 191.16 - samples/sec: 1336.14 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 17:56:13,210 epoch 4 - iter 2080/2606 - loss 0.08305110 - time (sec): 220.33 - samples/sec: 1332.00 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-17 17:56:40,320 epoch 4 - iter 2340/2606 - loss 0.08202034 - time (sec): 247.44 - samples/sec: 1329.58 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 17:57:08,440 epoch 4 - iter 2600/2606 - loss 0.08136397 - time (sec): 275.56 - samples/sec: 1330.33 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-10-17 17:57:09,019 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 17:57:09,019 EPOCH 4 done: loss 0.0813 - lr: 0.000020
|
131 |
+
2023-10-17 17:57:21,370 DEV : loss 0.27437207102775574 - f1-score (micro avg) 0.4033
|
132 |
+
2023-10-17 17:57:21,425 saving best model
|
133 |
+
2023-10-17 17:57:22,832 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 17:57:50,404 epoch 5 - iter 260/2606 - loss 0.05833828 - time (sec): 27.57 - samples/sec: 1316.84 - lr: 0.000020 - momentum: 0.000000
|
135 |
+
2023-10-17 17:58:17,100 epoch 5 - iter 520/2606 - loss 0.05838581 - time (sec): 54.26 - samples/sec: 1338.09 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 17:58:45,873 epoch 5 - iter 780/2606 - loss 0.05325511 - time (sec): 83.04 - samples/sec: 1335.64 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-17 17:59:14,285 epoch 5 - iter 1040/2606 - loss 0.05210183 - time (sec): 111.45 - samples/sec: 1331.46 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-17 17:59:42,645 epoch 5 - iter 1300/2606 - loss 0.05559593 - time (sec): 139.81 - samples/sec: 1323.08 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 18:00:10,380 epoch 5 - iter 1560/2606 - loss 0.05487736 - time (sec): 167.54 - samples/sec: 1329.02 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-17 18:00:37,660 epoch 5 - iter 1820/2606 - loss 0.05506955 - time (sec): 194.82 - samples/sec: 1328.17 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-17 18:01:04,469 epoch 5 - iter 2080/2606 - loss 0.05519986 - time (sec): 221.63 - samples/sec: 1324.06 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 18:01:32,780 epoch 5 - iter 2340/2606 - loss 0.05451422 - time (sec): 249.94 - samples/sec: 1326.95 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-17 18:01:59,316 epoch 5 - iter 2600/2606 - loss 0.05460912 - time (sec): 276.48 - samples/sec: 1326.47 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-17 18:01:59,877 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 18:01:59,877 EPOCH 5 done: loss 0.0546 - lr: 0.000017
|
146 |
+
2023-10-17 18:02:12,437 DEV : loss 0.2996568977832794 - f1-score (micro avg) 0.3881
|
147 |
+
2023-10-17 18:02:12,493 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-17 18:02:40,068 epoch 6 - iter 260/2606 - loss 0.03423666 - time (sec): 27.57 - samples/sec: 1364.83 - lr: 0.000016 - momentum: 0.000000
|
149 |
+
2023-10-17 18:03:06,656 epoch 6 - iter 520/2606 - loss 0.03348953 - time (sec): 54.16 - samples/sec: 1321.35 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-10-17 18:03:33,792 epoch 6 - iter 780/2606 - loss 0.03525955 - time (sec): 81.30 - samples/sec: 1315.45 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-17 18:04:00,415 epoch 6 - iter 1040/2606 - loss 0.03884942 - time (sec): 107.92 - samples/sec: 1313.70 - lr: 0.000015 - momentum: 0.000000
|
152 |
+
2023-10-17 18:04:27,780 epoch 6 - iter 1300/2606 - loss 0.03894248 - time (sec): 135.28 - samples/sec: 1310.85 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-10-17 18:04:55,792 epoch 6 - iter 1560/2606 - loss 0.03858817 - time (sec): 163.30 - samples/sec: 1314.79 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-17 18:05:23,682 epoch 6 - iter 1820/2606 - loss 0.03919379 - time (sec): 191.19 - samples/sec: 1315.67 - lr: 0.000014 - momentum: 0.000000
|
155 |
+
2023-10-17 18:05:53,070 epoch 6 - iter 2080/2606 - loss 0.03898069 - time (sec): 220.57 - samples/sec: 1320.80 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-10-17 18:06:21,530 epoch 6 - iter 2340/2606 - loss 0.03869181 - time (sec): 249.03 - samples/sec: 1332.24 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-17 18:06:48,297 epoch 6 - iter 2600/2606 - loss 0.03893522 - time (sec): 275.80 - samples/sec: 1328.89 - lr: 0.000013 - momentum: 0.000000
|
158 |
+
2023-10-17 18:06:49,003 ----------------------------------------------------------------------------------------------------
|
159 |
+
2023-10-17 18:06:49,003 EPOCH 6 done: loss 0.0389 - lr: 0.000013
|
160 |
+
2023-10-17 18:07:01,825 DEV : loss 0.34783273935317993 - f1-score (micro avg) 0.4035
|
161 |
+
2023-10-17 18:07:01,879 saving best model
|
162 |
+
2023-10-17 18:07:03,283 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-17 18:07:31,404 epoch 7 - iter 260/2606 - loss 0.02894101 - time (sec): 28.12 - samples/sec: 1363.81 - lr: 0.000013 - momentum: 0.000000
|
164 |
+
2023-10-17 18:07:58,656 epoch 7 - iter 520/2606 - loss 0.02724580 - time (sec): 55.37 - samples/sec: 1352.93 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-10-17 18:08:27,592 epoch 7 - iter 780/2606 - loss 0.03067550 - time (sec): 84.30 - samples/sec: 1333.06 - lr: 0.000012 - momentum: 0.000000
|
166 |
+
2023-10-17 18:08:54,620 epoch 7 - iter 1040/2606 - loss 0.02932069 - time (sec): 111.33 - samples/sec: 1319.87 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-10-17 18:09:21,942 epoch 7 - iter 1300/2606 - loss 0.02883956 - time (sec): 138.65 - samples/sec: 1322.62 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-17 18:09:49,932 epoch 7 - iter 1560/2606 - loss 0.02806752 - time (sec): 166.65 - samples/sec: 1331.28 - lr: 0.000011 - momentum: 0.000000
|
169 |
+
2023-10-17 18:10:16,796 epoch 7 - iter 1820/2606 - loss 0.02809168 - time (sec): 193.51 - samples/sec: 1329.05 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-10-17 18:10:44,355 epoch 7 - iter 2080/2606 - loss 0.02817759 - time (sec): 221.07 - samples/sec: 1321.32 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-17 18:11:12,175 epoch 7 - iter 2340/2606 - loss 0.02835946 - time (sec): 248.89 - samples/sec: 1318.43 - lr: 0.000010 - momentum: 0.000000
|
172 |
+
2023-10-17 18:11:40,537 epoch 7 - iter 2600/2606 - loss 0.02853150 - time (sec): 277.25 - samples/sec: 1320.98 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-10-17 18:11:41,332 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-17 18:11:41,332 EPOCH 7 done: loss 0.0285 - lr: 0.000010
|
175 |
+
2023-10-17 18:11:52,778 DEV : loss 0.4449138045310974 - f1-score (micro avg) 0.3797
|
176 |
+
2023-10-17 18:11:52,843 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-17 18:12:20,333 epoch 8 - iter 260/2606 - loss 0.02355353 - time (sec): 27.49 - samples/sec: 1308.83 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-10-17 18:12:48,478 epoch 8 - iter 520/2606 - loss 0.02242287 - time (sec): 55.63 - samples/sec: 1301.33 - lr: 0.000009 - momentum: 0.000000
|
179 |
+
2023-10-17 18:13:17,210 epoch 8 - iter 780/2606 - loss 0.02142082 - time (sec): 84.36 - samples/sec: 1302.22 - lr: 0.000009 - momentum: 0.000000
|
180 |
+
2023-10-17 18:13:44,116 epoch 8 - iter 1040/2606 - loss 0.02198135 - time (sec): 111.27 - samples/sec: 1318.24 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-17 18:14:11,882 epoch 8 - iter 1300/2606 - loss 0.02245041 - time (sec): 139.04 - samples/sec: 1320.33 - lr: 0.000008 - momentum: 0.000000
|
182 |
+
2023-10-17 18:14:38,817 epoch 8 - iter 1560/2606 - loss 0.02235451 - time (sec): 165.97 - samples/sec: 1320.02 - lr: 0.000008 - momentum: 0.000000
|
183 |
+
2023-10-17 18:15:06,477 epoch 8 - iter 1820/2606 - loss 0.02124624 - time (sec): 193.63 - samples/sec: 1321.69 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-17 18:15:33,535 epoch 8 - iter 2080/2606 - loss 0.02100098 - time (sec): 220.69 - samples/sec: 1321.00 - lr: 0.000007 - momentum: 0.000000
|
185 |
+
2023-10-17 18:16:00,553 epoch 8 - iter 2340/2606 - loss 0.02124546 - time (sec): 247.71 - samples/sec: 1323.91 - lr: 0.000007 - momentum: 0.000000
|
186 |
+
2023-10-17 18:16:29,052 epoch 8 - iter 2600/2606 - loss 0.02098403 - time (sec): 276.21 - samples/sec: 1327.93 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-17 18:16:29,596 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 18:16:29,597 EPOCH 8 done: loss 0.0211 - lr: 0.000007
|
189 |
+
2023-10-17 18:16:40,893 DEV : loss 0.5216322541236877 - f1-score (micro avg) 0.3707
|
190 |
+
2023-10-17 18:16:40,956 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-17 18:17:09,504 epoch 9 - iter 260/2606 - loss 0.01271966 - time (sec): 28.55 - samples/sec: 1427.43 - lr: 0.000006 - momentum: 0.000000
|
192 |
+
2023-10-17 18:17:36,981 epoch 9 - iter 520/2606 - loss 0.01328728 - time (sec): 56.02 - samples/sec: 1396.29 - lr: 0.000006 - momentum: 0.000000
|
193 |
+
2023-10-17 18:18:04,506 epoch 9 - iter 780/2606 - loss 0.01441554 - time (sec): 83.55 - samples/sec: 1357.80 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-17 18:18:32,793 epoch 9 - iter 1040/2606 - loss 0.01396545 - time (sec): 111.83 - samples/sec: 1344.18 - lr: 0.000005 - momentum: 0.000000
|
195 |
+
2023-10-17 18:18:59,609 epoch 9 - iter 1300/2606 - loss 0.01392302 - time (sec): 138.65 - samples/sec: 1349.91 - lr: 0.000005 - momentum: 0.000000
|
196 |
+
2023-10-17 18:19:26,372 epoch 9 - iter 1560/2606 - loss 0.01326058 - time (sec): 165.41 - samples/sec: 1349.25 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-17 18:19:53,465 epoch 9 - iter 1820/2606 - loss 0.01302468 - time (sec): 192.51 - samples/sec: 1344.95 - lr: 0.000004 - momentum: 0.000000
|
198 |
+
2023-10-17 18:20:21,078 epoch 9 - iter 2080/2606 - loss 0.01339090 - time (sec): 220.12 - samples/sec: 1348.97 - lr: 0.000004 - momentum: 0.000000
|
199 |
+
2023-10-17 18:20:48,720 epoch 9 - iter 2340/2606 - loss 0.01350316 - time (sec): 247.76 - samples/sec: 1349.79 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-17 18:21:13,941 epoch 9 - iter 2600/2606 - loss 0.01339440 - time (sec): 272.98 - samples/sec: 1343.38 - lr: 0.000003 - momentum: 0.000000
|
201 |
+
2023-10-17 18:21:14,446 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-17 18:21:14,446 EPOCH 9 done: loss 0.0135 - lr: 0.000003
|
203 |
+
2023-10-17 18:21:25,731 DEV : loss 0.5246009230613708 - f1-score (micro avg) 0.3787
|
204 |
+
2023-10-17 18:21:25,786 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-17 18:21:53,457 epoch 10 - iter 260/2606 - loss 0.01018569 - time (sec): 27.67 - samples/sec: 1373.20 - lr: 0.000003 - momentum: 0.000000
|
206 |
+
2023-10-17 18:22:22,398 epoch 10 - iter 520/2606 - loss 0.01216228 - time (sec): 56.61 - samples/sec: 1368.55 - lr: 0.000003 - momentum: 0.000000
|
207 |
+
2023-10-17 18:22:48,583 epoch 10 - iter 780/2606 - loss 0.01210997 - time (sec): 82.79 - samples/sec: 1337.18 - lr: 0.000002 - momentum: 0.000000
|
208 |
+
2023-10-17 18:23:16,814 epoch 10 - iter 1040/2606 - loss 0.01155669 - time (sec): 111.03 - samples/sec: 1338.09 - lr: 0.000002 - momentum: 0.000000
|
209 |
+
2023-10-17 18:23:44,121 epoch 10 - iter 1300/2606 - loss 0.01112163 - time (sec): 138.33 - samples/sec: 1322.20 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 18:24:11,721 epoch 10 - iter 1560/2606 - loss 0.01128677 - time (sec): 165.93 - samples/sec: 1324.56 - lr: 0.000001 - momentum: 0.000000
|
211 |
+
2023-10-17 18:24:41,182 epoch 10 - iter 1820/2606 - loss 0.01108459 - time (sec): 195.39 - samples/sec: 1327.32 - lr: 0.000001 - momentum: 0.000000
|
212 |
+
2023-10-17 18:25:08,860 epoch 10 - iter 2080/2606 - loss 0.01112871 - time (sec): 223.07 - samples/sec: 1326.85 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 18:25:35,011 epoch 10 - iter 2340/2606 - loss 0.01122759 - time (sec): 249.22 - samples/sec: 1322.79 - lr: 0.000000 - momentum: 0.000000
|
214 |
+
2023-10-17 18:26:02,919 epoch 10 - iter 2600/2606 - loss 0.01076733 - time (sec): 277.13 - samples/sec: 1322.70 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-10-17 18:26:03,521 ----------------------------------------------------------------------------------------------------
|
216 |
+
2023-10-17 18:26:03,521 EPOCH 10 done: loss 0.0107 - lr: 0.000000
|
217 |
+
2023-10-17 18:26:14,910 DEV : loss 0.5314543843269348 - f1-score (micro avg) 0.3801
|
218 |
+
2023-10-17 18:26:15,512 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-17 18:26:15,514 Loading model from best epoch ...
|
220 |
+
2023-10-17 18:26:18,076 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
221 |
+
2023-10-17 18:26:38,263
|
222 |
+
Results:
|
223 |
+
- F-score (micro) 0.4345
|
224 |
+
- F-score (macro) 0.3022
|
225 |
+
- Accuracy 0.282
|
226 |
+
|
227 |
+
By class:
|
228 |
+
precision recall f1-score support
|
229 |
+
|
230 |
+
LOC 0.4256 0.5255 0.4703 1214
|
231 |
+
PER 0.4325 0.4480 0.4401 808
|
232 |
+
ORG 0.2940 0.3031 0.2985 353
|
233 |
+
HumanProd 0.0000 0.0000 0.0000 15
|
234 |
+
|
235 |
+
micro avg 0.4091 0.4632 0.4345 2390
|
236 |
+
macro avg 0.2880 0.3192 0.3022 2390
|
237 |
+
weighted avg 0.4058 0.4632 0.4318 2390
|
238 |
+
|
239 |
+
2023-10-17 18:26:38,263 ----------------------------------------------------------------------------------------------------
|