Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4ddfc6eb5f67f5db2cdebc7ff8e8afe8028a394f9ba5c8d9679435a88055928
|
3 |
+
size 443323527
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 09:59:09 0.0000 0.4118 0.1314 0.6353 0.7347 0.6814 0.5395
|
3 |
+
2 10:00:43 0.0000 0.1258 0.1379 0.7477 0.7741 0.7607 0.6273
|
4 |
+
3 10:02:16 0.0000 0.0909 0.1591 0.7686 0.7864 0.7774 0.6561
|
5 |
+
4 10:03:50 0.0000 0.0686 0.1592 0.7594 0.7946 0.7766 0.6532
|
6 |
+
5 10:05:23 0.0000 0.0529 0.2099 0.7709 0.7918 0.7812 0.6599
|
7 |
+
6 10:06:56 0.0000 0.0405 0.1888 0.7901 0.7837 0.7869 0.6713
|
8 |
+
7 10:08:29 0.0000 0.0302 0.2058 0.7523 0.7932 0.7722 0.6543
|
9 |
+
8 10:10:02 0.0000 0.0235 0.2024 0.7968 0.8054 0.8011 0.6876
|
10 |
+
9 10:11:34 0.0000 0.0170 0.2027 0.7981 0.8014 0.7997 0.6857
|
11 |
+
10 10:13:07 0.0000 0.0116 0.2077 0.8008 0.8150 0.8078 0.6957
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-16 09:57:38,090 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-16 09:57:38,091 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-16 09:57:38,091 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-16 09:57:38,092 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
|
53 |
+
2023-10-16 09:57:38,092 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-16 09:57:38,092 Train: 7142 sentences
|
55 |
+
2023-10-16 09:57:38,092 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-16 09:57:38,092 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-16 09:57:38,092 Training Params:
|
58 |
+
2023-10-16 09:57:38,092 - learning_rate: "5e-05"
|
59 |
+
2023-10-16 09:57:38,092 - mini_batch_size: "4"
|
60 |
+
2023-10-16 09:57:38,092 - max_epochs: "10"
|
61 |
+
2023-10-16 09:57:38,092 - shuffle: "True"
|
62 |
+
2023-10-16 09:57:38,092 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-16 09:57:38,092 Plugins:
|
64 |
+
2023-10-16 09:57:38,092 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-16 09:57:38,092 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-16 09:57:38,092 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-16 09:57:38,092 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-16 09:57:38,092 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-16 09:57:38,092 Computation:
|
70 |
+
2023-10-16 09:57:38,092 - compute on device: cuda:0
|
71 |
+
2023-10-16 09:57:38,092 - embedding storage: none
|
72 |
+
2023-10-16 09:57:38,092 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-16 09:57:38,092 Model training base path: "hmbench-newseye/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
|
74 |
+
2023-10-16 09:57:38,093 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-16 09:57:38,093 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-16 09:57:46,981 epoch 1 - iter 178/1786 - loss 1.94742290 - time (sec): 8.89 - samples/sec: 2937.79 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-16 09:57:55,593 epoch 1 - iter 356/1786 - loss 1.24408736 - time (sec): 17.50 - samples/sec: 2890.19 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-16 09:58:04,150 epoch 1 - iter 534/1786 - loss 0.94076449 - time (sec): 26.06 - samples/sec: 2887.12 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-16 09:58:12,740 epoch 1 - iter 712/1786 - loss 0.77543030 - time (sec): 34.65 - samples/sec: 2872.30 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-16 09:58:21,321 epoch 1 - iter 890/1786 - loss 0.66770568 - time (sec): 43.23 - samples/sec: 2843.87 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-16 09:58:30,044 epoch 1 - iter 1068/1786 - loss 0.59121842 - time (sec): 51.95 - samples/sec: 2822.92 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-16 09:58:39,285 epoch 1 - iter 1246/1786 - loss 0.52805819 - time (sec): 61.19 - samples/sec: 2824.23 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-16 09:58:48,299 epoch 1 - iter 1424/1786 - loss 0.47799529 - time (sec): 70.21 - samples/sec: 2826.86 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-16 09:58:57,179 epoch 1 - iter 1602/1786 - loss 0.44205077 - time (sec): 79.09 - samples/sec: 2820.65 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-16 09:59:06,126 epoch 1 - iter 1780/1786 - loss 0.41271469 - time (sec): 88.03 - samples/sec: 2816.87 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-16 09:59:06,417 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-16 09:59:06,417 EPOCH 1 done: loss 0.4118 - lr: 0.000050
|
88 |
+
2023-10-16 09:59:09,619 DEV : loss 0.13136854767799377 - f1-score (micro avg) 0.6814
|
89 |
+
2023-10-16 09:59:09,638 saving best model
|
90 |
+
2023-10-16 09:59:10,047 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-16 09:59:19,266 epoch 2 - iter 178/1786 - loss 0.10867454 - time (sec): 9.22 - samples/sec: 2781.86 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-16 09:59:28,367 epoch 2 - iter 356/1786 - loss 0.11195066 - time (sec): 18.32 - samples/sec: 2755.44 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-16 09:59:37,194 epoch 2 - iter 534/1786 - loss 0.12303775 - time (sec): 27.14 - samples/sec: 2719.96 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-16 09:59:45,992 epoch 2 - iter 712/1786 - loss 0.12365229 - time (sec): 35.94 - samples/sec: 2757.21 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-16 09:59:54,863 epoch 2 - iter 890/1786 - loss 0.12778904 - time (sec): 44.81 - samples/sec: 2792.71 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-16 10:00:03,600 epoch 2 - iter 1068/1786 - loss 0.12649898 - time (sec): 53.55 - samples/sec: 2790.61 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-16 10:00:12,465 epoch 2 - iter 1246/1786 - loss 0.12771009 - time (sec): 62.42 - samples/sec: 2777.44 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-16 10:00:21,267 epoch 2 - iter 1424/1786 - loss 0.12802324 - time (sec): 71.22 - samples/sec: 2780.94 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-16 10:00:30,154 epoch 2 - iter 1602/1786 - loss 0.12740373 - time (sec): 80.10 - samples/sec: 2800.22 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-16 10:00:38,805 epoch 2 - iter 1780/1786 - loss 0.12594981 - time (sec): 88.76 - samples/sec: 2796.84 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-16 10:00:39,067 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-16 10:00:39,067 EPOCH 2 done: loss 0.1258 - lr: 0.000044
|
103 |
+
2023-10-16 10:00:43,284 DEV : loss 0.13792423903942108 - f1-score (micro avg) 0.7607
|
104 |
+
2023-10-16 10:00:43,300 saving best model
|
105 |
+
2023-10-16 10:00:44,350 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-16 10:00:53,160 epoch 3 - iter 178/1786 - loss 0.08110664 - time (sec): 8.81 - samples/sec: 2699.52 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-16 10:01:01,652 epoch 3 - iter 356/1786 - loss 0.08864351 - time (sec): 17.30 - samples/sec: 2858.43 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-16 10:01:10,237 epoch 3 - iter 534/1786 - loss 0.09228133 - time (sec): 25.89 - samples/sec: 2872.89 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-16 10:01:19,143 epoch 3 - iter 712/1786 - loss 0.09148226 - time (sec): 34.79 - samples/sec: 2895.87 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-16 10:01:28,075 epoch 3 - iter 890/1786 - loss 0.09059160 - time (sec): 43.72 - samples/sec: 2862.22 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-16 10:01:36,653 epoch 3 - iter 1068/1786 - loss 0.09136882 - time (sec): 52.30 - samples/sec: 2844.87 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-16 10:01:45,467 epoch 3 - iter 1246/1786 - loss 0.09087475 - time (sec): 61.12 - samples/sec: 2825.63 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-16 10:01:54,159 epoch 3 - iter 1424/1786 - loss 0.09230921 - time (sec): 69.81 - samples/sec: 2828.78 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-16 10:02:02,750 epoch 3 - iter 1602/1786 - loss 0.09190419 - time (sec): 78.40 - samples/sec: 2829.31 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-16 10:02:11,661 epoch 3 - iter 1780/1786 - loss 0.09100255 - time (sec): 87.31 - samples/sec: 2838.16 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-16 10:02:12,015 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-16 10:02:12,016 EPOCH 3 done: loss 0.0909 - lr: 0.000039
|
118 |
+
2023-10-16 10:02:16,212 DEV : loss 0.15914735198020935 - f1-score (micro avg) 0.7774
|
119 |
+
2023-10-16 10:02:16,228 saving best model
|
120 |
+
2023-10-16 10:02:16,730 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-16 10:02:25,530 epoch 4 - iter 178/1786 - loss 0.05552608 - time (sec): 8.80 - samples/sec: 2812.79 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-16 10:02:34,417 epoch 4 - iter 356/1786 - loss 0.06436274 - time (sec): 17.69 - samples/sec: 2799.71 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-16 10:02:43,378 epoch 4 - iter 534/1786 - loss 0.06377877 - time (sec): 26.65 - samples/sec: 2766.31 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-16 10:02:52,524 epoch 4 - iter 712/1786 - loss 0.06390155 - time (sec): 35.79 - samples/sec: 2794.47 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-16 10:03:01,362 epoch 4 - iter 890/1786 - loss 0.06628737 - time (sec): 44.63 - samples/sec: 2774.34 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-16 10:03:10,171 epoch 4 - iter 1068/1786 - loss 0.06610693 - time (sec): 53.44 - samples/sec: 2767.56 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-16 10:03:19,114 epoch 4 - iter 1246/1786 - loss 0.06561388 - time (sec): 62.38 - samples/sec: 2769.21 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-16 10:03:27,722 epoch 4 - iter 1424/1786 - loss 0.06713646 - time (sec): 70.99 - samples/sec: 2773.70 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-16 10:03:36,190 epoch 4 - iter 1602/1786 - loss 0.06817480 - time (sec): 79.46 - samples/sec: 2771.49 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-16 10:03:45,416 epoch 4 - iter 1780/1786 - loss 0.06843290 - time (sec): 88.69 - samples/sec: 2796.41 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-16 10:03:45,716 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-16 10:03:45,716 EPOCH 4 done: loss 0.0686 - lr: 0.000033
|
133 |
+
2023-10-16 10:03:50,390 DEV : loss 0.15915921330451965 - f1-score (micro avg) 0.7766
|
134 |
+
2023-10-16 10:03:50,406 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-16 10:03:59,089 epoch 5 - iter 178/1786 - loss 0.05022154 - time (sec): 8.68 - samples/sec: 2613.18 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-10-16 10:04:07,970 epoch 5 - iter 356/1786 - loss 0.05090393 - time (sec): 17.56 - samples/sec: 2741.71 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-16 10:04:16,988 epoch 5 - iter 534/1786 - loss 0.05106929 - time (sec): 26.58 - samples/sec: 2801.87 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-16 10:04:25,594 epoch 5 - iter 712/1786 - loss 0.04974481 - time (sec): 35.19 - samples/sec: 2783.34 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-16 10:04:34,524 epoch 5 - iter 890/1786 - loss 0.05195749 - time (sec): 44.12 - samples/sec: 2808.00 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-16 10:04:43,144 epoch 5 - iter 1068/1786 - loss 0.05146219 - time (sec): 52.74 - samples/sec: 2780.35 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-10-16 10:04:52,122 epoch 5 - iter 1246/1786 - loss 0.05143701 - time (sec): 61.72 - samples/sec: 2790.81 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-16 10:05:01,020 epoch 5 - iter 1424/1786 - loss 0.05105708 - time (sec): 70.61 - samples/sec: 2786.63 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-16 10:05:09,953 epoch 5 - iter 1602/1786 - loss 0.05263520 - time (sec): 79.55 - samples/sec: 2805.39 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-16 10:05:18,626 epoch 5 - iter 1780/1786 - loss 0.05290404 - time (sec): 88.22 - samples/sec: 2811.00 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-16 10:05:18,934 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-16 10:05:18,935 EPOCH 5 done: loss 0.0529 - lr: 0.000028
|
147 |
+
2023-10-16 10:05:23,061 DEV : loss 0.20985299348831177 - f1-score (micro avg) 0.7812
|
148 |
+
2023-10-16 10:05:23,077 saving best model
|
149 |
+
2023-10-16 10:05:23,560 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-16 10:05:32,536 epoch 6 - iter 178/1786 - loss 0.04741637 - time (sec): 8.97 - samples/sec: 2965.00 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-16 10:05:41,275 epoch 6 - iter 356/1786 - loss 0.04275169 - time (sec): 17.71 - samples/sec: 2872.22 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-16 10:05:50,210 epoch 6 - iter 534/1786 - loss 0.03942651 - time (sec): 26.65 - samples/sec: 2818.41 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-16 10:05:58,662 epoch 6 - iter 712/1786 - loss 0.04059826 - time (sec): 35.10 - samples/sec: 2830.73 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-16 10:06:07,484 epoch 6 - iter 890/1786 - loss 0.04004597 - time (sec): 43.92 - samples/sec: 2814.49 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-10-16 10:06:16,218 epoch 6 - iter 1068/1786 - loss 0.03891575 - time (sec): 52.66 - samples/sec: 2844.00 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-16 10:06:24,675 epoch 6 - iter 1246/1786 - loss 0.03960494 - time (sec): 61.11 - samples/sec: 2830.47 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-16 10:06:33,645 epoch 6 - iter 1424/1786 - loss 0.03949478 - time (sec): 70.08 - samples/sec: 2816.99 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-16 10:06:43,058 epoch 6 - iter 1602/1786 - loss 0.03917810 - time (sec): 79.50 - samples/sec: 2797.23 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-16 10:06:51,989 epoch 6 - iter 1780/1786 - loss 0.04050214 - time (sec): 88.43 - samples/sec: 2802.76 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-10-16 10:06:52,248 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-16 10:06:52,248 EPOCH 6 done: loss 0.0405 - lr: 0.000022
|
162 |
+
2023-10-16 10:06:56,411 DEV : loss 0.1887538582086563 - f1-score (micro avg) 0.7869
|
163 |
+
2023-10-16 10:06:56,427 saving best model
|
164 |
+
2023-10-16 10:06:56,933 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-16 10:07:05,796 epoch 7 - iter 178/1786 - loss 0.03361585 - time (sec): 8.86 - samples/sec: 2795.40 - lr: 0.000022 - momentum: 0.000000
|
166 |
+
2023-10-16 10:07:14,528 epoch 7 - iter 356/1786 - loss 0.03329973 - time (sec): 17.59 - samples/sec: 2848.14 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-16 10:07:23,285 epoch 7 - iter 534/1786 - loss 0.03326424 - time (sec): 26.35 - samples/sec: 2855.10 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-16 10:07:31,995 epoch 7 - iter 712/1786 - loss 0.03160995 - time (sec): 35.06 - samples/sec: 2818.73 - lr: 0.000020 - momentum: 0.000000
|
169 |
+
2023-10-16 10:07:40,594 epoch 7 - iter 890/1786 - loss 0.03005408 - time (sec): 43.66 - samples/sec: 2835.09 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-16 10:07:49,327 epoch 7 - iter 1068/1786 - loss 0.03084739 - time (sec): 52.39 - samples/sec: 2832.70 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-16 10:07:58,392 epoch 7 - iter 1246/1786 - loss 0.03032454 - time (sec): 61.45 - samples/sec: 2831.30 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-16 10:08:06,931 epoch 7 - iter 1424/1786 - loss 0.03088217 - time (sec): 69.99 - samples/sec: 2818.38 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-16 10:08:15,826 epoch 7 - iter 1602/1786 - loss 0.03073768 - time (sec): 78.89 - samples/sec: 2831.34 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-16 10:08:24,577 epoch 7 - iter 1780/1786 - loss 0.03023599 - time (sec): 87.64 - samples/sec: 2829.60 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-16 10:08:24,844 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-16 10:08:24,844 EPOCH 7 done: loss 0.0302 - lr: 0.000017
|
177 |
+
2023-10-16 10:08:29,610 DEV : loss 0.2058480978012085 - f1-score (micro avg) 0.7722
|
178 |
+
2023-10-16 10:08:29,627 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-16 10:08:38,694 epoch 8 - iter 178/1786 - loss 0.04352804 - time (sec): 9.07 - samples/sec: 2988.38 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-16 10:08:47,551 epoch 8 - iter 356/1786 - loss 0.03156578 - time (sec): 17.92 - samples/sec: 2921.28 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-16 10:08:56,308 epoch 8 - iter 534/1786 - loss 0.02706534 - time (sec): 26.68 - samples/sec: 2895.29 - lr: 0.000015 - momentum: 0.000000
|
182 |
+
2023-10-16 10:09:04,820 epoch 8 - iter 712/1786 - loss 0.02702835 - time (sec): 35.19 - samples/sec: 2867.00 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-16 10:09:13,393 epoch 8 - iter 890/1786 - loss 0.02599787 - time (sec): 43.76 - samples/sec: 2854.41 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-16 10:09:22,260 epoch 8 - iter 1068/1786 - loss 0.02445266 - time (sec): 52.63 - samples/sec: 2819.22 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-16 10:09:31,228 epoch 8 - iter 1246/1786 - loss 0.02430149 - time (sec): 61.60 - samples/sec: 2840.93 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-16 10:09:40,085 epoch 8 - iter 1424/1786 - loss 0.02378568 - time (sec): 70.46 - samples/sec: 2827.21 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-16 10:09:48,717 epoch 8 - iter 1602/1786 - loss 0.02346589 - time (sec): 79.09 - samples/sec: 2807.17 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-16 10:09:57,557 epoch 8 - iter 1780/1786 - loss 0.02359126 - time (sec): 87.93 - samples/sec: 2821.74 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2023-10-16 10:09:57,838 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-16 10:09:57,839 EPOCH 8 done: loss 0.0235 - lr: 0.000011
|
191 |
+
2023-10-16 10:10:02,026 DEV : loss 0.20242059230804443 - f1-score (micro avg) 0.8011
|
192 |
+
2023-10-16 10:10:02,043 saving best model
|
193 |
+
2023-10-16 10:10:02,569 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-16 10:10:11,249 epoch 9 - iter 178/1786 - loss 0.02199362 - time (sec): 8.67 - samples/sec: 2936.70 - lr: 0.000011 - momentum: 0.000000
|
195 |
+
2023-10-16 10:10:19,860 epoch 9 - iter 356/1786 - loss 0.01834317 - time (sec): 17.29 - samples/sec: 2843.56 - lr: 0.000010 - momentum: 0.000000
|
196 |
+
2023-10-16 10:10:28,500 epoch 9 - iter 534/1786 - loss 0.01636593 - time (sec): 25.93 - samples/sec: 2848.80 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-16 10:10:37,237 epoch 9 - iter 712/1786 - loss 0.01554274 - time (sec): 34.66 - samples/sec: 2869.85 - lr: 0.000009 - momentum: 0.000000
|
198 |
+
2023-10-16 10:10:45,796 epoch 9 - iter 890/1786 - loss 0.01668982 - time (sec): 43.22 - samples/sec: 2843.23 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-16 10:10:54,295 epoch 9 - iter 1068/1786 - loss 0.01736686 - time (sec): 51.72 - samples/sec: 2846.50 - lr: 0.000008 - momentum: 0.000000
|
200 |
+
2023-10-16 10:11:03,452 epoch 9 - iter 1246/1786 - loss 0.01717748 - time (sec): 60.88 - samples/sec: 2822.73 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-16 10:11:12,044 epoch 9 - iter 1424/1786 - loss 0.01657150 - time (sec): 69.47 - samples/sec: 2830.65 - lr: 0.000007 - momentum: 0.000000
|
202 |
+
2023-10-16 10:11:20,876 epoch 9 - iter 1602/1786 - loss 0.01682811 - time (sec): 78.30 - samples/sec: 2823.29 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-16 10:11:29,889 epoch 9 - iter 1780/1786 - loss 0.01701446 - time (sec): 87.31 - samples/sec: 2839.70 - lr: 0.000006 - momentum: 0.000000
|
204 |
+
2023-10-16 10:11:30,162 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-16 10:11:30,163 EPOCH 9 done: loss 0.0170 - lr: 0.000006
|
206 |
+
2023-10-16 10:11:34,352 DEV : loss 0.20268410444259644 - f1-score (micro avg) 0.7997
|
207 |
+
2023-10-16 10:11:34,368 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-16 10:11:43,098 epoch 10 - iter 178/1786 - loss 0.01040220 - time (sec): 8.73 - samples/sec: 2763.04 - lr: 0.000005 - momentum: 0.000000
|
209 |
+
2023-10-16 10:11:51,917 epoch 10 - iter 356/1786 - loss 0.00841270 - time (sec): 17.55 - samples/sec: 2818.53 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-16 10:12:00,800 epoch 10 - iter 534/1786 - loss 0.01266186 - time (sec): 26.43 - samples/sec: 2818.85 - lr: 0.000004 - momentum: 0.000000
|
211 |
+
2023-10-16 10:12:09,453 epoch 10 - iter 712/1786 - loss 0.01314607 - time (sec): 35.08 - samples/sec: 2838.64 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-16 10:12:18,110 epoch 10 - iter 890/1786 - loss 0.01322097 - time (sec): 43.74 - samples/sec: 2848.20 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-16 10:12:26,982 epoch 10 - iter 1068/1786 - loss 0.01308993 - time (sec): 52.61 - samples/sec: 2851.51 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-16 10:12:35,888 epoch 10 - iter 1246/1786 - loss 0.01241075 - time (sec): 61.52 - samples/sec: 2855.40 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-16 10:12:44,553 epoch 10 - iter 1424/1786 - loss 0.01264047 - time (sec): 70.18 - samples/sec: 2847.46 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-16 10:12:53,476 epoch 10 - iter 1602/1786 - loss 0.01178041 - time (sec): 79.11 - samples/sec: 2839.80 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-16 10:13:02,172 epoch 10 - iter 1780/1786 - loss 0.01160785 - time (sec): 87.80 - samples/sec: 2826.86 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-16 10:13:02,437 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-16 10:13:02,438 EPOCH 10 done: loss 0.0116 - lr: 0.000000
|
220 |
+
2023-10-16 10:13:07,862 DEV : loss 0.207749143242836 - f1-score (micro avg) 0.8078
|
221 |
+
2023-10-16 10:13:07,880 saving best model
|
222 |
+
2023-10-16 10:13:09,016 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-16 10:13:09,018 Loading model from best epoch ...
|
224 |
+
2023-10-16 10:13:11,262 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
225 |
+
2023-10-16 10:13:21,169
|
226 |
+
Results:
|
227 |
+
- F-score (micro) 0.6891
|
228 |
+
- F-score (macro) 0.607
|
229 |
+
- Accuracy 0.5469
|
230 |
+
|
231 |
+
By class:
|
232 |
+
precision recall f1-score support
|
233 |
+
|
234 |
+
LOC 0.7334 0.6758 0.7034 1095
|
235 |
+
PER 0.7644 0.7727 0.7686 1012
|
236 |
+
ORG 0.4248 0.5462 0.4779 357
|
237 |
+
HumanProd 0.3729 0.6667 0.4783 33
|
238 |
+
|
239 |
+
micro avg 0.6820 0.6964 0.6891 2497
|
240 |
+
macro avg 0.5739 0.6654 0.6070 2497
|
241 |
+
weighted avg 0.6971 0.6964 0.6946 2497
|
242 |
+
|
243 |
+
2023-10-16 10:13:21,170 ----------------------------------------------------------------------------------------------------
|