Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +245 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc7e8045a23a7146873c15b29a1d5bf775431a875bc9774e9eb2b252a2b18e79
|
3 |
+
size 443323527
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 10:57:19 0.0000 0.3871 0.1484 0.6875 0.7333 0.7097 0.5722
|
3 |
+
2 10:58:52 0.0000 0.1201 0.1257 0.6912 0.7918 0.7381 0.6044
|
4 |
+
3 11:00:28 0.0000 0.0851 0.1489 0.7281 0.8014 0.7630 0.6368
|
5 |
+
4 11:02:01 0.0000 0.0647 0.1738 0.7513 0.7932 0.7717 0.6478
|
6 |
+
5 11:03:33 0.0000 0.0490 0.1748 0.7660 0.7796 0.7728 0.6549
|
7 |
+
6 11:05:07 0.0000 0.0410 0.1692 0.7591 0.7973 0.7777 0.6562
|
8 |
+
7 11:06:40 0.0000 0.0292 0.1868 0.7716 0.7905 0.7809 0.6648
|
9 |
+
8 11:08:13 0.0000 0.0221 0.1947 0.7880 0.8041 0.7960 0.6824
|
10 |
+
9 11:09:48 0.0000 0.0180 0.1845 0.7911 0.8190 0.8048 0.6928
|
11 |
+
10 11:11:32 0.0000 0.0118 0.1851 0.7902 0.8150 0.8024 0.6893
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-16 10:55:48,313 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-16 10:55:48,314 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-16 10:55:48,314 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-16 10:55:48,314 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
|
53 |
+
2023-10-16 10:55:48,314 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-16 10:55:48,314 Train: 7142 sentences
|
55 |
+
2023-10-16 10:55:48,314 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-16 10:55:48,314 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-16 10:55:48,315 Training Params:
|
58 |
+
2023-10-16 10:55:48,315 - learning_rate: "5e-05"
|
59 |
+
2023-10-16 10:55:48,315 - mini_batch_size: "4"
|
60 |
+
2023-10-16 10:55:48,315 - max_epochs: "10"
|
61 |
+
2023-10-16 10:55:48,315 - shuffle: "True"
|
62 |
+
2023-10-16 10:55:48,315 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-16 10:55:48,315 Plugins:
|
64 |
+
2023-10-16 10:55:48,315 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-16 10:55:48,315 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-16 10:55:48,315 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-16 10:55:48,315 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-16 10:55:48,315 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-16 10:55:48,315 Computation:
|
70 |
+
2023-10-16 10:55:48,315 - compute on device: cuda:0
|
71 |
+
2023-10-16 10:55:48,315 - embedding storage: none
|
72 |
+
2023-10-16 10:55:48,315 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-16 10:55:48,315 Model training base path: "hmbench-newseye/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
74 |
+
2023-10-16 10:55:48,315 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-16 10:55:48,315 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-16 10:55:57,101 epoch 1 - iter 178/1786 - loss 1.86473963 - time (sec): 8.78 - samples/sec: 2798.20 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-16 10:56:05,989 epoch 1 - iter 356/1786 - loss 1.15143669 - time (sec): 17.67 - samples/sec: 2805.49 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-16 10:56:14,650 epoch 1 - iter 534/1786 - loss 0.89028895 - time (sec): 26.33 - samples/sec: 2786.50 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-16 10:56:23,319 epoch 1 - iter 712/1786 - loss 0.72907805 - time (sec): 35.00 - samples/sec: 2791.74 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-16 10:56:32,196 epoch 1 - iter 890/1786 - loss 0.61722937 - time (sec): 43.88 - samples/sec: 2795.47 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-16 10:56:40,923 epoch 1 - iter 1068/1786 - loss 0.54496368 - time (sec): 52.61 - samples/sec: 2804.43 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-16 10:56:49,517 epoch 1 - iter 1246/1786 - loss 0.49315943 - time (sec): 61.20 - samples/sec: 2810.17 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-16 10:56:58,516 epoch 1 - iter 1424/1786 - loss 0.44831232 - time (sec): 70.20 - samples/sec: 2810.84 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-16 10:57:07,385 epoch 1 - iter 1602/1786 - loss 0.41610604 - time (sec): 79.07 - samples/sec: 2819.82 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-16 10:57:16,356 epoch 1 - iter 1780/1786 - loss 0.38771319 - time (sec): 88.04 - samples/sec: 2818.72 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-16 10:57:16,622 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-16 10:57:16,623 EPOCH 1 done: loss 0.3871 - lr: 0.000050
|
88 |
+
2023-10-16 10:57:19,749 DEV : loss 0.14844156801700592 - f1-score (micro avg) 0.7097
|
89 |
+
2023-10-16 10:57:19,766 saving best model
|
90 |
+
2023-10-16 10:57:20,235 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-16 10:57:29,212 epoch 2 - iter 178/1786 - loss 0.11605918 - time (sec): 8.98 - samples/sec: 2852.83 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-16 10:57:38,138 epoch 2 - iter 356/1786 - loss 0.12100219 - time (sec): 17.90 - samples/sec: 2815.83 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-16 10:57:46,829 epoch 2 - iter 534/1786 - loss 0.12074401 - time (sec): 26.59 - samples/sec: 2813.99 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-16 10:57:55,616 epoch 2 - iter 712/1786 - loss 0.12193352 - time (sec): 35.38 - samples/sec: 2817.75 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-16 10:58:04,529 epoch 2 - iter 890/1786 - loss 0.12062941 - time (sec): 44.29 - samples/sec: 2848.46 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-16 10:58:13,257 epoch 2 - iter 1068/1786 - loss 0.12155219 - time (sec): 53.02 - samples/sec: 2842.58 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-16 10:58:21,966 epoch 2 - iter 1246/1786 - loss 0.12243129 - time (sec): 61.73 - samples/sec: 2853.56 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-16 10:58:30,614 epoch 2 - iter 1424/1786 - loss 0.12158950 - time (sec): 70.38 - samples/sec: 2851.52 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-16 10:58:39,167 epoch 2 - iter 1602/1786 - loss 0.12123775 - time (sec): 78.93 - samples/sec: 2850.42 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-16 10:58:47,748 epoch 2 - iter 1780/1786 - loss 0.11991333 - time (sec): 87.51 - samples/sec: 2836.16 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-16 10:58:48,021 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-16 10:58:48,022 EPOCH 2 done: loss 0.1201 - lr: 0.000044
|
103 |
+
2023-10-16 10:58:52,252 DEV : loss 0.12567166984081268 - f1-score (micro avg) 0.7381
|
104 |
+
2023-10-16 10:58:52,278 saving best model
|
105 |
+
2023-10-16 10:58:52,816 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-16 10:59:02,942 epoch 3 - iter 178/1786 - loss 0.07602399 - time (sec): 10.12 - samples/sec: 2507.17 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-16 10:59:12,927 epoch 3 - iter 356/1786 - loss 0.08707339 - time (sec): 20.11 - samples/sec: 2555.56 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-16 10:59:21,653 epoch 3 - iter 534/1786 - loss 0.08690813 - time (sec): 28.83 - samples/sec: 2648.10 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-16 10:59:30,119 epoch 3 - iter 712/1786 - loss 0.08815103 - time (sec): 37.30 - samples/sec: 2670.85 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-16 10:59:38,819 epoch 3 - iter 890/1786 - loss 0.08755368 - time (sec): 46.00 - samples/sec: 2695.07 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-16 10:59:47,465 epoch 3 - iter 1068/1786 - loss 0.08864883 - time (sec): 54.65 - samples/sec: 2710.43 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-16 10:59:56,372 epoch 3 - iter 1246/1786 - loss 0.08622224 - time (sec): 63.55 - samples/sec: 2735.57 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-16 11:00:05,220 epoch 3 - iter 1424/1786 - loss 0.08740866 - time (sec): 72.40 - samples/sec: 2750.50 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-16 11:00:13,804 epoch 3 - iter 1602/1786 - loss 0.08628163 - time (sec): 80.98 - samples/sec: 2760.57 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-16 11:00:22,397 epoch 3 - iter 1780/1786 - loss 0.08517479 - time (sec): 89.58 - samples/sec: 2763.43 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-16 11:00:22,747 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-16 11:00:22,747 EPOCH 3 done: loss 0.0851 - lr: 0.000039
|
118 |
+
2023-10-16 11:00:28,065 DEV : loss 0.14893780648708344 - f1-score (micro avg) 0.763
|
119 |
+
2023-10-16 11:00:28,095 saving best model
|
120 |
+
2023-10-16 11:00:28,742 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-16 11:00:37,510 epoch 4 - iter 178/1786 - loss 0.05930779 - time (sec): 8.77 - samples/sec: 2921.05 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-16 11:00:46,255 epoch 4 - iter 356/1786 - loss 0.06322745 - time (sec): 17.51 - samples/sec: 2865.97 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-16 11:00:54,769 epoch 4 - iter 534/1786 - loss 0.06363083 - time (sec): 26.03 - samples/sec: 2834.26 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-16 11:01:03,344 epoch 4 - iter 712/1786 - loss 0.06394879 - time (sec): 34.60 - samples/sec: 2818.00 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-16 11:01:12,317 epoch 4 - iter 890/1786 - loss 0.06327639 - time (sec): 43.57 - samples/sec: 2815.14 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-16 11:01:21,136 epoch 4 - iter 1068/1786 - loss 0.06455310 - time (sec): 52.39 - samples/sec: 2814.42 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-16 11:01:29,981 epoch 4 - iter 1246/1786 - loss 0.06478828 - time (sec): 61.24 - samples/sec: 2837.72 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-16 11:01:38,780 epoch 4 - iter 1424/1786 - loss 0.06518193 - time (sec): 70.04 - samples/sec: 2829.75 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-16 11:01:47,514 epoch 4 - iter 1602/1786 - loss 0.06559590 - time (sec): 78.77 - samples/sec: 2834.31 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-16 11:01:56,245 epoch 4 - iter 1780/1786 - loss 0.06474763 - time (sec): 87.50 - samples/sec: 2832.00 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-16 11:01:56,584 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-16 11:01:56,584 EPOCH 4 done: loss 0.0647 - lr: 0.000033
|
133 |
+
2023-10-16 11:02:01,327 DEV : loss 0.17378392815589905 - f1-score (micro avg) 0.7717
|
134 |
+
2023-10-16 11:02:01,343 saving best model
|
135 |
+
2023-10-16 11:02:01,929 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-16 11:02:10,798 epoch 5 - iter 178/1786 - loss 0.04377203 - time (sec): 8.86 - samples/sec: 2853.88 - lr: 0.000033 - momentum: 0.000000
|
137 |
+
2023-10-16 11:02:19,500 epoch 5 - iter 356/1786 - loss 0.04754169 - time (sec): 17.56 - samples/sec: 2891.83 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-16 11:02:28,081 epoch 5 - iter 534/1786 - loss 0.04802223 - time (sec): 26.15 - samples/sec: 2810.91 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-16 11:02:36,836 epoch 5 - iter 712/1786 - loss 0.04911834 - time (sec): 34.90 - samples/sec: 2859.03 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-16 11:02:45,355 epoch 5 - iter 890/1786 - loss 0.04948678 - time (sec): 43.42 - samples/sec: 2844.94 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-16 11:02:54,112 epoch 5 - iter 1068/1786 - loss 0.04806990 - time (sec): 52.18 - samples/sec: 2848.29 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-10-16 11:03:02,929 epoch 5 - iter 1246/1786 - loss 0.04825570 - time (sec): 60.99 - samples/sec: 2841.27 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-16 11:03:11,923 epoch 5 - iter 1424/1786 - loss 0.04891461 - time (sec): 69.99 - samples/sec: 2857.31 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-16 11:03:20,483 epoch 5 - iter 1602/1786 - loss 0.04962470 - time (sec): 78.55 - samples/sec: 2857.09 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-16 11:03:29,083 epoch 5 - iter 1780/1786 - loss 0.04904968 - time (sec): 87.15 - samples/sec: 2845.88 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-16 11:03:29,351 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-16 11:03:29,351 EPOCH 5 done: loss 0.0490 - lr: 0.000028
|
148 |
+
2023-10-16 11:03:33,517 DEV : loss 0.17484842240810394 - f1-score (micro avg) 0.7728
|
149 |
+
2023-10-16 11:03:33,537 saving best model
|
150 |
+
2023-10-16 11:03:34,174 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-10-16 11:03:43,090 epoch 6 - iter 178/1786 - loss 0.03564048 - time (sec): 8.91 - samples/sec: 2725.57 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-16 11:03:52,442 epoch 6 - iter 356/1786 - loss 0.03852911 - time (sec): 18.26 - samples/sec: 2720.29 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2023-10-16 11:04:01,277 epoch 6 - iter 534/1786 - loss 0.04136964 - time (sec): 27.10 - samples/sec: 2738.01 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-16 11:04:09,800 epoch 6 - iter 712/1786 - loss 0.04024227 - time (sec): 35.62 - samples/sec: 2769.91 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2023-10-16 11:04:18,513 epoch 6 - iter 890/1786 - loss 0.04012505 - time (sec): 44.34 - samples/sec: 2778.95 - lr: 0.000025 - momentum: 0.000000
|
156 |
+
2023-10-16 11:04:27,194 epoch 6 - iter 1068/1786 - loss 0.04289492 - time (sec): 53.02 - samples/sec: 2807.61 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-16 11:04:36,047 epoch 6 - iter 1246/1786 - loss 0.04221536 - time (sec): 61.87 - samples/sec: 2818.13 - lr: 0.000024 - momentum: 0.000000
|
158 |
+
2023-10-16 11:04:44,578 epoch 6 - iter 1424/1786 - loss 0.04182216 - time (sec): 70.40 - samples/sec: 2812.76 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-16 11:04:53,113 epoch 6 - iter 1602/1786 - loss 0.04171130 - time (sec): 78.94 - samples/sec: 2819.50 - lr: 0.000023 - momentum: 0.000000
|
160 |
+
2023-10-16 11:05:01,768 epoch 6 - iter 1780/1786 - loss 0.04099380 - time (sec): 87.59 - samples/sec: 2833.27 - lr: 0.000022 - momentum: 0.000000
|
161 |
+
2023-10-16 11:05:02,038 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-16 11:05:02,038 EPOCH 6 done: loss 0.0410 - lr: 0.000022
|
163 |
+
2023-10-16 11:05:07,359 DEV : loss 0.16918683052062988 - f1-score (micro avg) 0.7777
|
164 |
+
2023-10-16 11:05:07,384 saving best model
|
165 |
+
2023-10-16 11:05:08,130 ----------------------------------------------------------------------------------------------------
|
166 |
+
2023-10-16 11:05:16,990 epoch 7 - iter 178/1786 - loss 0.02648365 - time (sec): 8.86 - samples/sec: 3052.78 - lr: 0.000022 - momentum: 0.000000
|
167 |
+
2023-10-16 11:05:25,906 epoch 7 - iter 356/1786 - loss 0.02728552 - time (sec): 17.77 - samples/sec: 2869.74 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-16 11:05:34,815 epoch 7 - iter 534/1786 - loss 0.02817086 - time (sec): 26.68 - samples/sec: 2837.46 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-10-16 11:05:43,583 epoch 7 - iter 712/1786 - loss 0.02776279 - time (sec): 35.45 - samples/sec: 2851.27 - lr: 0.000020 - momentum: 0.000000
|
170 |
+
2023-10-16 11:05:52,253 epoch 7 - iter 890/1786 - loss 0.02711624 - time (sec): 44.12 - samples/sec: 2851.82 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-16 11:06:00,861 epoch 7 - iter 1068/1786 - loss 0.02876745 - time (sec): 52.73 - samples/sec: 2839.91 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2023-10-16 11:06:09,636 epoch 7 - iter 1246/1786 - loss 0.02936533 - time (sec): 61.50 - samples/sec: 2815.16 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-16 11:06:18,532 epoch 7 - iter 1424/1786 - loss 0.02812044 - time (sec): 70.40 - samples/sec: 2830.18 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2023-10-16 11:06:27,146 epoch 7 - iter 1602/1786 - loss 0.02927136 - time (sec): 79.01 - samples/sec: 2823.45 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-16 11:06:35,809 epoch 7 - iter 1780/1786 - loss 0.02918995 - time (sec): 87.68 - samples/sec: 2825.84 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2023-10-16 11:06:36,138 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-16 11:06:36,139 EPOCH 7 done: loss 0.0292 - lr: 0.000017
|
178 |
+
2023-10-16 11:06:40,964 DEV : loss 0.186806321144104 - f1-score (micro avg) 0.7809
|
179 |
+
2023-10-16 11:06:40,981 saving best model
|
180 |
+
2023-10-16 11:06:41,594 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-10-16 11:06:50,242 epoch 8 - iter 178/1786 - loss 0.02299188 - time (sec): 8.65 - samples/sec: 2815.85 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-16 11:06:58,827 epoch 8 - iter 356/1786 - loss 0.02359001 - time (sec): 17.23 - samples/sec: 2827.78 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-16 11:07:07,629 epoch 8 - iter 534/1786 - loss 0.02254523 - time (sec): 26.03 - samples/sec: 2811.01 - lr: 0.000015 - momentum: 0.000000
|
184 |
+
2023-10-16 11:07:16,444 epoch 8 - iter 712/1786 - loss 0.02199670 - time (sec): 34.85 - samples/sec: 2838.40 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-10-16 11:07:25,076 epoch 8 - iter 890/1786 - loss 0.02265221 - time (sec): 43.48 - samples/sec: 2842.73 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-16 11:07:33,588 epoch 8 - iter 1068/1786 - loss 0.02375428 - time (sec): 51.99 - samples/sec: 2838.22 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-16 11:07:42,171 epoch 8 - iter 1246/1786 - loss 0.02271185 - time (sec): 60.57 - samples/sec: 2838.00 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-16 11:07:50,996 epoch 8 - iter 1424/1786 - loss 0.02264176 - time (sec): 69.40 - samples/sec: 2830.78 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-16 11:07:59,917 epoch 8 - iter 1602/1786 - loss 0.02278864 - time (sec): 78.32 - samples/sec: 2834.50 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-16 11:08:08,823 epoch 8 - iter 1780/1786 - loss 0.02208015 - time (sec): 87.23 - samples/sec: 2842.31 - lr: 0.000011 - momentum: 0.000000
|
191 |
+
2023-10-16 11:08:09,133 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-16 11:08:09,133 EPOCH 8 done: loss 0.0221 - lr: 0.000011
|
193 |
+
2023-10-16 11:08:13,486 DEV : loss 0.19474762678146362 - f1-score (micro avg) 0.796
|
194 |
+
2023-10-16 11:08:13,506 saving best model
|
195 |
+
2023-10-16 11:08:14,028 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-16 11:08:23,840 epoch 9 - iter 178/1786 - loss 0.01798579 - time (sec): 9.81 - samples/sec: 2549.51 - lr: 0.000011 - momentum: 0.000000
|
197 |
+
2023-10-16 11:08:32,940 epoch 9 - iter 356/1786 - loss 0.01872623 - time (sec): 18.91 - samples/sec: 2662.25 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-10-16 11:08:42,168 epoch 9 - iter 534/1786 - loss 0.01727464 - time (sec): 28.14 - samples/sec: 2677.48 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-16 11:08:50,782 epoch 9 - iter 712/1786 - loss 0.01690762 - time (sec): 36.75 - samples/sec: 2698.90 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-16 11:08:59,465 epoch 9 - iter 890/1786 - loss 0.01729150 - time (sec): 45.43 - samples/sec: 2718.02 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-16 11:09:08,235 epoch 9 - iter 1068/1786 - loss 0.01759655 - time (sec): 54.20 - samples/sec: 2743.24 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-16 11:09:17,081 epoch 9 - iter 1246/1786 - loss 0.01836818 - time (sec): 63.05 - samples/sec: 2762.68 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-16 11:09:25,811 epoch 9 - iter 1424/1786 - loss 0.01880668 - time (sec): 71.78 - samples/sec: 2792.07 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-16 11:09:34,295 epoch 9 - iter 1602/1786 - loss 0.01846836 - time (sec): 80.26 - samples/sec: 2780.26 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-16 11:09:43,041 epoch 9 - iter 1780/1786 - loss 0.01794289 - time (sec): 89.01 - samples/sec: 2784.51 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-16 11:09:43,337 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-16 11:09:43,338 EPOCH 9 done: loss 0.0180 - lr: 0.000006
|
208 |
+
2023-10-16 11:09:48,154 DEV : loss 0.1844618022441864 - f1-score (micro avg) 0.8048
|
209 |
+
2023-10-16 11:09:48,181 saving best model
|
210 |
+
2023-10-16 11:09:48,726 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-16 11:09:58,642 epoch 10 - iter 178/1786 - loss 0.01185496 - time (sec): 9.91 - samples/sec: 2381.04 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-10-16 11:10:08,696 epoch 10 - iter 356/1786 - loss 0.01135159 - time (sec): 19.97 - samples/sec: 2548.54 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-16 11:10:18,592 epoch 10 - iter 534/1786 - loss 0.01376928 - time (sec): 29.86 - samples/sec: 2545.00 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-16 11:10:28,392 epoch 10 - iter 712/1786 - loss 0.01268921 - time (sec): 39.66 - samples/sec: 2517.19 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-16 11:10:38,278 epoch 10 - iter 890/1786 - loss 0.01251690 - time (sec): 49.55 - samples/sec: 2514.27 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-16 11:10:48,164 epoch 10 - iter 1068/1786 - loss 0.01347864 - time (sec): 59.44 - samples/sec: 2506.01 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-16 11:10:58,148 epoch 10 - iter 1246/1786 - loss 0.01278922 - time (sec): 69.42 - samples/sec: 2507.14 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-16 11:11:07,753 epoch 10 - iter 1424/1786 - loss 0.01267902 - time (sec): 79.02 - samples/sec: 2494.79 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-16 11:11:17,680 epoch 10 - iter 1602/1786 - loss 0.01194308 - time (sec): 88.95 - samples/sec: 2510.87 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-16 11:11:27,393 epoch 10 - iter 1780/1786 - loss 0.01186500 - time (sec): 98.66 - samples/sec: 2515.20 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-16 11:11:27,704 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-16 11:11:27,704 EPOCH 10 done: loss 0.0118 - lr: 0.000000
|
223 |
+
2023-10-16 11:11:32,731 DEV : loss 0.18512549996376038 - f1-score (micro avg) 0.8024
|
224 |
+
2023-10-16 11:11:33,164 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-16 11:11:33,165 Loading model from best epoch ...
|
226 |
+
2023-10-16 11:11:34,828 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
227 |
+
2023-10-16 11:11:44,735
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.6916
|
230 |
+
- F-score (macro) 0.5961
|
231 |
+
- Accuracy 0.5475
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
LOC 0.6627 0.7196 0.6900 1095
|
237 |
+
PER 0.7735 0.7628 0.7682 1012
|
238 |
+
ORG 0.5198 0.5154 0.5176 357
|
239 |
+
HumanProd 0.3167 0.5758 0.4086 33
|
240 |
+
|
241 |
+
micro avg 0.6778 0.7060 0.6916 2497
|
242 |
+
macro avg 0.5682 0.6434 0.5961 2497
|
243 |
+
weighted avg 0.6826 0.7060 0.6933 2497
|
244 |
+
|
245 |
+
2023-10-16 11:11:44,735 ----------------------------------------------------------------------------------------------------
|