File size: 9,846 Bytes
caecb8c
 
 
 
7b7eb08
caecb8c
7b7eb08
caecb8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b7eb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from typing import Optional, Sequence, Tuple, Union

import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from xlstm.components.init import small_init_init_
from xlstm.utils import WeightDecayOptimGroupMixin
from xlstm.xlstm_block_stack import xLSTMBlockStack as _xLSTMBlockStack

from .configuration_xlstm import xLSTMConfig


class xLSTMPreTrainedModel(PreTrainedModel):
    """Base class for all models."""

    config_class = xLSTMConfig


class xLSTMBlockStack(_xLSTMBlockStack):
    """Small wrapper to expose hidden states"""

    def forward(
        self, x: torch.Tensor, **kwargs
    ) -> Tuple[torch.Tensor, Sequence[torch.Tensor]]:
        hidden_states = ()
        for block in self.blocks:
            x = block(x, **kwargs)
            hidden_states += (x,)

        x = self.post_blocks_norm(x)

        return x, hidden_states


class xLSTMModel(xLSTMPreTrainedModel):
    def __init__(self, config: xLSTMConfig):
        super().__init__(config)
        self.config = config

        self.token_embedding = nn.Embedding(
            num_embeddings=config.vocab_size, embedding_dim=config.embedding_dim
        )
        _config = config.to_xlstm_config()

        self.emb_dropout = (
            nn.Dropout(_config.dropout)
            if _config.add_embedding_dropout
            else nn.Identity()
        )

        self.xlstm_block_stack = xLSTMBlockStack(config=_config)


    def forward(
        self,
        input_ids: torch.LongTensor,
        output_hidden_states: Optional[bool] = None,
        return_dict=Optional[bool],
    ) -> Union[Tuple, BaseModelOutput]:
        token_embedding = self.token_embedding(input_ids)
        x = self.emb_dropout(token_embedding)
        x, hidden_states = self.xlstm_block_stack(x)

        if output_hidden_states:
            hidden_states = (token_embedding,) + hidden_states

        if not return_dict:
            return x, hidden_states

        return BaseModelOutput(
            last_hidden_state=x,
            hidden_states=hidden_states if output_hidden_states else None,
        )


class xLSTMForCausalLM(xLSTMPreTrainedModel, WeightDecayOptimGroupMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: xLSTMConfig, **kwargs):
        super().__init__(config)
        self.config = config
        self.vocab_size = config.vocab_size

        self.model = xLSTMModel(config)

        self.lm_head = nn.Linear(
            in_features=config.embedding_dim,
            out_features=config.vocab_size,
            bias=False,
        )

        self.post_init()
        # TODO: Add option for up-projection

    def get_input_embeddings(self):
        return self.model.token_embedding

    def set_input_embeddings(self, value: nn.Module):
        self.model.token_embedding = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, value):
        self.lm_head = value

    def reset_parameters(self):
        self.model.xlstm_block_stack.reset_parameters()

        small_init_init_(
            self.get_input_embeddings().weight, dim=self.config.embedding_dim
        )

        if not self.config.tie_word_embeddings:
            small_init_init_(
                self.get_output_embeddings().weight, dim=self.config.embedding_dim
            )

    def forward(
        self,
        input_ids: torch.Tensor,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        output = self.model(
            input_ids,
            output_hidden_states=output_hidden_states,
        )

        hidden_state = output[0]

        logits = self.lm_head(hidden_state)
        logits = logits.float()

        loss = None

        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()

            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)

            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + output[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            hidden_states=output.hidden_states,
        )

    def step(
        self,
        idx: torch.Tensor,
        state: dict[str, dict[str, tuple[torch.Tensor, ...]]] = None,
        **kwargs,
    ) -> tuple[torch.Tensor, dict[str, dict[str, tuple[torch.Tensor, ...]]]]:
        x = self.token_embedding(idx)
        x = self.emb_dropout(x)
        x, state = self.xlstm_block_stack.step(x, state=state, **kwargs)
        logits = self.lm_head(x)
        return logits, state

    def _create_weight_decay_optim_groups(
        self, **kwargs
    ) -> tuple[Sequence[nn.Parameter], Sequence[nn.Parameter]]:
        weight_decay, no_weight_decay = super()._create_weight_decay_optim_groups(
            **kwargs
        )
        # remove token embedding and add it to the correct group, accrording to the config
        weight_decay = list(weight_decay)
        removed = 0
        for idx in range(len(weight_decay)):
            if weight_decay[idx - removed] is self.get_input_embeddings().weight:
                weight_decay.pop(idx - removed)
                removed += 1
        weight_decay = tuple(weight_decay)

        # TODO: Fix this
        # if self.config.weight_decay_on_embedding:
        if True:
            weight_decay += (self.get_input_embeddings().weight,)
        else:
            no_weight_decay += (self.get_input_embeddings().weight,)

        return weight_decay, no_weight_decay

    def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
        new_embeddings = nn.Embedding(
            new_num_tokens, self.token_embedding.embedding_dim
        )
        self.token_embedding = new_embeddings.to(self.device)
        return new_embeddings

    def tie_weights(self):
        self.get_output_embeddings().weight = self.get_input_embeddings().weight

    def prepare_inputs_for_generation(
        self,
        input_ids,
        **kwargs,
    ):
        model_inputs = {
            "input_ids": input_ids.to(self.device),
        }
        return model_inputs


class xLSTMForSequenceClassification(xLSTMPreTrainedModel):

    def __init__(self, config: xLSTMConfig, **kwargs):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config
        self.model = xLSTMModel(config)
        self.classifier = nn.Linear(config.embedding_dim, config.num_labels, bias=False)

        self.init_weights()

    def forward(
        self,
        input_ids: torch.Tensor,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        output = self.model(
            input_ids,
            output_hidden_states=output_hidden_states,
        )

        hidden_state = output[0]

        logits = self.classifier(hidden_state)
        batch_size = input_ids.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1


        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None

        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)

        if not return_dict:
            output = (pooled_logits,) + output[1:]
            return ((loss,) + output) if loss is not None else output


        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            hidden_states=output.hidden_states,
        )