--- language: - fa license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper small Persian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 fa type: mozilla-foundation/common_voice_11_0 config: fa split: test metrics: - type: wer value: 32.8995086472 name: Wer --- # Whisper small Persian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 fa dataset. It achieves the following results on the evaluation set: - Loss: 0.4924 - Wer: 32.8995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5533 | 1.56 | 500 | 0.7044 | 54.5499 | | 0.3951 | 3.12 | 1000 | 0.5893 | 47.5210 | | 0.3296 | 4.67 | 1500 | 0.5429 | 42.6451 | | 0.2662 | 6.23 | 2000 | 0.5223 | 40.6644 | | 0.2535 | 7.79 | 2500 | 0.5045 | 38.5304 | | 0.224 | 9.35 | 3000 | 0.5002 | 36.8822 | | 0.2204 | 10.9 | 3500 | 0.4967 | 35.3076 | | 0.2024 | 12.46 | 4000 | 0.4951 | 34.9883 | | 0.2099 | 14.02 | 4500 | 0.4921 | 34.9842 | | 0.1836 | 15.58 | 5000 | 0.4924 | 34.8995 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2